1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_dynamic.cpp}
Atomic Functions with Dynamic Parameters: Example and Test
##########################################################
Purpose
*******
This example demonstrates using dynamic parameters with an
:ref:`atomic_three-name` function.
Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^3` is defined by
:math:`g_0 (x) = x_0 * x_ 0`,
:math:`g_1 (x) = x_0 * x_ 1`,
:math:`g_2 (x) = x_1 * x_ 2`.
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp> // CppAD include file
namespace { // start empty namespace
using CppAD::vector; // abbreviate CppAD::vector using vector
// start definition of atomic derived class using atomic_three interface
class atomic_dynamic : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
// can use const char* name when calling this constructor
atomic_dynamic(const std::string& name) : // can have more arguments
CppAD::atomic_three<double>(name) // inform base class of name
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 3; // n
ok &= type_y.size() == 3; // m
if( ! ok )
return false;
type_y[0] = type_x[0];
type_y[1] = std::max( type_x[0], type_x[1] );
type_y[2] = std::max( type_x[1], type_x[2] );
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector<double>& taylor_x ,
vector<double>& taylor_y ) override
{
# ifndef NDEBUG
size_t n = taylor_x.size() / (order_up + 1);
size_t m = taylor_y.size() / (order_up + 1);
# endif
assert( n == 3 );
assert( m == 3 );
assert( order_low <= order_up );
// return flag
bool ok = order_up == 0;
if( ! ok )
return ok;
// Order zero forward mode.
// This case must always be implemented
if( need_y > size_t(CppAD::variable_enum) )
{ // g_0 = x_0 * x_0
taylor_y[0] = taylor_x[0] * taylor_x[0];
// g_1 = x_0 * x_1
taylor_y[1] = taylor_x[0] * taylor_x[1];
// g_2 = x_1 * x_2
taylor_y[2] = taylor_x[1] * taylor_x[2];
}
else
{ // This uses need_y to reduce amount of computation.
// It is probably faster, for this case, to ignore need_y.
vector<CppAD::ad_type_enum> type_y( taylor_y.size() );
for_type(taylor_x, type_x, type_y);
// g_0 = x_0 * x_0
if( size_t(type_y[0]) == need_y )
taylor_y[0] = taylor_x[0] * taylor_x[0];
// g_1 = x_0 * x_1
if( size_t(type_y[1]) == need_y )
taylor_y[1] = taylor_x[0] * taylor_x[1];
// g_2 = x_1 * x_2
if( size_t(type_y[2]) == need_y )
taylor_y[2] = taylor_x[1] * taylor_x[2];
}
return ok;
}
/* {xrst_code}
{xrst_spell_on}
End Class Definition
********************
{xrst_spell_off}
{xrst_code cpp} */
}; // End of atomic_dynamic class
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool dynamic(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// Create the atomic dynamic object corresponding to g(x)
atomic_dynamic afun("atomic_dynamic");
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
// Create the function f(u) = g(c, p, u) for this example.
//
// constant parameter
double c_0 = 2.0;
//
// indepndent dynamic parameter vector
size_t np = 1;
CPPAD_TESTVECTOR(double) p(np);
CPPAD_TESTVECTOR( AD<double> ) ap(np);
ap[0] = p[0] = 3.0;
//
// independent variable vector
size_t nu = 1;
double u_0 = 0.5;
CPPAD_TESTVECTOR( AD<double> ) au(nu);
au[0] = u_0;
// declare independent variables and start tape recording
CppAD::Independent(au, ap);
// range space vector
size_t ny = 3;
CPPAD_TESTVECTOR( AD<double> ) ay(ny);
// call atomic function and store result in ay
// y = ( c * c, c * p, p * x )
CPPAD_TESTVECTOR( AD<double> ) ax(3);
ax[0] = c_0; // x_0
ax[1] = ap[0]; // x_1
ax[2] = au[0]; // x_2
afun(ax, ay);
// check type of result
ok &= Constant( ay[0] );
ok &= Dynamic( ay[1] );
ok &= Variable( ay[2] );
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (au, ay); // f(u) = (c * c, c * p, p * u)
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
// check function value
double check = c_0 * c_0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
check = c_0 * p[0];
ok &= NearEqual( Value(ay[1]) , check, eps, eps);
check = p[0] * u_0;
ok &= NearEqual( Value(ay[2]) , check, eps, eps);
// check zero order forward mode
size_t q;
CPPAD_TESTVECTOR( double ) u_q(nu), y_q(ny);
q = 0;
u_q[0] = u_0;
y_q = f.Forward(q, u_q);
check = c_0 * c_0;
ok &= NearEqual(y_q[0] , check, eps, eps);
check = c_0 * p[0];
ok &= NearEqual(y_q[1] , check, eps, eps);
check = p[0] * u_0;
ok &= NearEqual(y_q[2] , check, eps, eps);
// set new value for dynamic parameters
p[0] = 2.0 * p[0];
f.new_dynamic(p);
y_q = f.Forward(q, u_q);
check = c_0 * c_0;
ok &= NearEqual(y_q[0] , check, eps, eps);
check = c_0 * p[0];
ok &= NearEqual(y_q[1] , check, eps, eps);
check = p[0] * u_0;
ok &= NearEqual(y_q[2] , check, eps, eps);
/* {xrst_code}
{xrst_spell_on}
Return Test Result
==================
{xrst_spell_off}
{xrst_code cpp} */
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_dynamic.cpp}
*/
|