File: forward.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (322 lines) | stat: -rw-r--r-- 9,508 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_forward.cpp}

Atomic Functions and Forward Mode: Example and Test
###################################################

Purpose
*******
This example demonstrates forward mode derivative calculation
using an :ref:`atomic_three-name` function.

Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by

.. math::

   g(x) = \left( \begin{array}{c}
      x_2 * x_2 \\
      x_0 * x_1
   \end{array} \right)

Jacobian
********
The corresponding Jacobian is

.. math::

   g^{(1)} (x) = \left( \begin{array}{ccc}
     0  &   0 & 2 x_2 \\
   x_1  & x_0 & 0
   \end{array} \right)

Hessian
*******
The Hessians of the component functions are

.. math::

   g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
      0 & 0 & 0  \\
      0 & 0 & 0  \\
      0 & 0 & 2
   \end{array} \right)
   \W{,}
   g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
      0 & 1 & 0 \\
      1 & 0 & 0 \\
      0 & 0 & 0
   \end{array} \right)

Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace {          // begin empty namespace
using CppAD::vector; // abbreviate CppAD::vector using vector
//
class atomic_forward : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
   atomic_forward(const std::string& name) :
   CppAD::atomic_three<double>(name)
   { }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
   // calculate type_y
   bool for_type(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<CppAD::ad_type_enum>&        type_y      ) override
   {  assert( parameter_x.size() == type_x.size() );
      bool ok = type_x.size() == 3; // n
      ok     &= type_y.size() == 2; // m
      if( ! ok )
         return false;
      type_y[0] = type_x[2];
      type_y[1] = std::max(type_x[0], type_x[1]);
      return true;
   }
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
   // forward mode routine called by CppAD
   bool forward(
      const vector<double>&              parameter_x  ,
      const vector<CppAD::ad_type_enum>& type_x       ,
      size_t                             need_y       ,
      size_t                             order_low    ,
      size_t                             order_up     ,
      const vector<double>&              taylor_x     ,
      vector<double>&                    taylor_y     ) override
   {
      size_t q1 = order_up + 1;
# ifndef NDEBUG
      size_t n = taylor_x.size() / q1;
      size_t m = taylor_y.size() / q1;
# endif
      assert( n == 3 );
      assert( m == 2 );
      assert( order_low <= order_up );

      // this example only implements up to second order forward mode
      bool ok = order_up <=  2;
      if( ! ok )
         return ok;

      // ------------------------------------------------------------------
      // Zero forward mode.
      // This case must always be implemented
      // g(x) = [ x_2 * x_2 ]
      //        [ x_0 * x_1 ]
      // y^0  = f( x^0 )
      if( order_low <= 0 )
      {  // y_0^0 = x_2^0 * x_2^0
         taylor_y[0*q1+0] = taylor_x[2*q1+0] * taylor_x[2*q1+0];
         // y_1^0 = x_0^0 * x_1^0
         taylor_y[1*q1+0] = taylor_x[0*q1+0] * taylor_x[1*q1+0];
      }
      if( order_up <=  0 )
         return ok;
      // ------------------------------------------------------------------
      // First order forward mode.
      // This case is needed if first order forward mode is used.
      // g'(x) = [   0,   0, 2 * x_2 ]
      //         [ x_1, x_0,       0 ]
      // y^1 =  f'(x^0) * x^1
      if( order_low <= 1 )
      {  // y_0^1 = 2 * x_2^0 * x_2^1
         taylor_y[0*q1+1] = 2.0 * taylor_x[2*q1+0] * taylor_x[2*q1+1];
         // y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
         taylor_y[1*q1+1]  = taylor_x[1*q1+0] * taylor_x[0*q1+1];
         taylor_y[1*q1+1] += taylor_x[0*q1+0] * taylor_x[1*q1+1];
      }
      if( order_up <=  1 )
         return ok;
      // ------------------------------------------------------------------
      // Second order forward mode.
      // This case is neede if second order forwrd mode is used.
      // g'(x) = [   0,   0, 2 x_2 ]
      //         [ x_1, x_0,     0 ]
      //
      //            [ 0 , 0 , 0 ]                  [ 0 , 1 , 0 ]
      // g_0''(x) = [ 0 , 0 , 0 ]  g_1^{(2)} (x) = [ 1 , 0 , 0 ]
      //            [ 0 , 0 , 2 ]                  [ 0 , 0 , 0 ]
      //
      //  y_0^2 = x^1 * g_0''( x^0 ) x^1 / 2! + g_0'( x^0 ) x^2
      //        = ( x_2^1 * 2.0 * x_2^1 ) / 2!
      //        + 2.0 * x_2^0 * x_2^2
      taylor_y[0*q1+2]  = taylor_x[2*q1+1] * taylor_x[2*q1+1];
      taylor_y[0*q1+2] += 2.0 * taylor_x[2*q1+0] * taylor_x[2*q1+2];
      //
      //  y_1^2 = x^1 * g_1''( x^0 ) x^1 / 2! + g_1'( x^0 ) x^2
      //        = ( x_1^1 * x_0^1 + x_0^1 * x_1^1) / 2
      //        + x_1^0 * x_0^2 + x_0^0 + x_1^2
      taylor_y[1*q1+2]  = taylor_x[1*q1+1] * taylor_x[0*q1+1];
      taylor_y[1*q1+2] += taylor_x[1*q1+0] * taylor_x[0*q1+2];
      taylor_y[1*q1+2] += taylor_x[0*q1+0] * taylor_x[1*q1+2];
      // ------------------------------------------------------------------
      return ok;
   }
};
}  // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool forward(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   //
   // Create the atomic_forward object corresponding to g(x)
   atomic_forward afun("atomic_forward");
   //
   // Create the function f(u) = g(u) for this example.
   //
   // domain space vector
   size_t n  = 3;
   double u_0 = 1.00;
   double u_1 = 2.00;
   double u_2 = 3.00;
   vector< AD<double> > au(n);
   au[0] = u_0;
   au[1] = u_1;
   au[2] = u_2;

   // declare independent variables and start tape recording
   CppAD::Independent(au);

   // range space vector
   size_t m = 2;
   vector< AD<double> > ay(m);

   // call atomic function
   vector< AD<double> > ax = au;
   afun(ax, ay);

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // y = f(u)
   //
   // check function value
   double check = u_2 * u_2;
   ok &= NearEqual( Value(ay[0]) , check,  eps, eps);
   check = u_0 * u_1;
   ok &= NearEqual( Value(ay[1]) , check,  eps, eps);

   // --------------------------------------------------------------------
   // zero order forward
   //
   vector<double> u0(n), y0(m);
   u0[0] = u_0;
   u0[1] = u_1;
   u0[2] = u_2;
   y0   = f.Forward(0, u0);
   check = u_2 * u_2;
   ok &= NearEqual(y0[0] , check,  eps, eps);
   check = u_0 * u_1;
   ok &= NearEqual(y0[1] , check,  eps, eps);
   // --------------------------------------------------------------------
   // first order forward
   //
   // value of Jacobian of f
   double check_jac[] = {
      0.0, 0.0, 2.0 * u_2,
      u_1, u_0,       0.0
   };
   vector<double> u1(n), y1(m);
   // check first order forward mode
   for(size_t j = 0; j < n; j++)
      u1[j] = 0.0;
   for(size_t j = 0; j < n; j++)
   {  // compute partial in j-th component direction
      u1[j] = 1.0;
      y1    = f.Forward(1, u1);
      u1[j] = 0.0;
      // check this direction
      for(size_t i = 0; i < m; i++)
         ok &= NearEqual(y1[i], check_jac[i * n + j], eps, eps);
   }
   // --------------------------------------------------------------------
   // second order forward
   //
   // value of Hessian of g_0
   double check_hes_0[] = {
      0.0, 0.0, 0.0,
      0.0, 0.0, 0.0,
      0.0, 0.0, 2.0
   };
   //
   // value of Hessian of g_1
   double check_hes_1[] = {
      0.0, 1.0, 0.0,
      1.0, 0.0, 0.0,
      0.0, 0.0, 0.0
   };
   vector<double> u2(n), y2(m);
   for(size_t j = 0; j < n; j++)
      u2[j] = 0.0;
   // compute diagonal elements of the Hessian
   for(size_t j = 0; j < n; j++)
   {  // first order forward in j-th direction
      u1[j] = 1.0;
      f.Forward(1, u1);
      y2 = f.Forward(2, u2);
      // check this element of Hessian diagonal
      ok &= NearEqual(y2[0], check_hes_0[j * n + j] / 2.0, eps, eps);
      ok &= NearEqual(y2[1], check_hes_1[j * n + j] / 2.0, eps, eps);
      //
      for(size_t k = 0; k < n; k++) if( k != j )
      {  u1[k] = 1.0;
         f.Forward(1, u1);
         y2 = f.Forward(2, u2);
         //
         // y2 = (H_jj + H_kk + H_jk + H_kj) / 2.0
         // y2 = (H_jj + H_kk) / 2.0 + H_jk
         //
         double H_jj = check_hes_0[j * n + j];
         double H_kk = check_hes_0[k * n + k];
         double H_jk = y2[0] - (H_kk + H_jj) / 2.0;
         ok &= NearEqual(H_jk, check_hes_0[j * n + k], eps, eps);
         //
         H_jj = check_hes_1[j * n + j];
         H_kk = check_hes_1[k * n + k];
         H_jk = y2[1] - (H_kk + H_jj) / 2.0;
         ok &= NearEqual(H_jk, check_hes_1[j * n + k], eps, eps);
         //
         u1[k] = 0.0;
      }
      u1[j] = 0.0;
   }
   // --------------------------------------------------------------------
   return ok;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end atomic_three_forward.cpp}
*/