1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_get_started.cpp}
Getting Started with Atomic Functions: Example and Test
#######################################################
Purpose
*******
This example demonstrates the minimal amount of information
necessary for a :ref:`atomic_three-name` function.
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp> // CppAD include file
namespace { // start empty namespace
using CppAD::vector; // abbreviate CppAD::vector using vector
// start definition of atomic derived class using atomic_three interface
class atomic_get_started : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
// can use const char* name when calling this constructor
atomic_get_started(const std::string& name) : // can have more arguments
CppAD::atomic_three<double>(name) // inform base class of name
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 1; // n
ok &= type_y.size() == 1; // m
if( ! ok )
return false;
type_y[0] = type_x[0];
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector<double>& taylor_x ,
vector<double>& taylor_y ) override
{
# ifndef NDEBUG
size_t n = taylor_x.size() / (order_up + 1);
size_t m = taylor_y.size() / (order_up + 1);
# endif
assert( n == 1 );
assert( m == 1 );
assert( order_low <= order_up );
// return flag
bool ok = order_up == 0;
if( ! ok )
return ok;
// Order zero forward mode.
// This case must always be implemented
// y^0 = g( x^0 ) = 1 / x^0
taylor_y[0] = 1. / taylor_x[0];
//
return ok;
}
/* {xrst_code}
{xrst_spell_on}
End Class Definition
********************
{xrst_spell_off}
{xrst_code cpp} */
}; // End of atomic_get_started class
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool get_started(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// Create the atomic get_started object corresponding to g(x)
atomic_get_started afun("atomic_get_started");
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
// Create the function f(x) which is eqaul to g(x) for this example.
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
CPPAD_TESTVECTOR( AD<double> ) ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR( AD<double> ) ay(m);
// call atomic function and store result in au[0]
// u = 1 / x
CPPAD_TESTVECTOR( AD<double> ) au(m);
afun(ax, au);
// now use AD division to invert to invert the operation
ay[0] = 1.0 / au[0]; // y = 1 / u = x
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, ay); // f(x) = x
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
CPPAD_TESTVECTOR( double ) x_q(n), y_q(m);
q = 0;
x_q[0] = x0;
y_q = f.Forward(q, x_q);
ok &= NearEqual(y_q[0] , check, eps, eps);
/* {xrst_code}
{xrst_spell_on}
Return Test Result
==================
{xrst_spell_off}
{xrst_code cpp} */
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_get_started.cpp}
*/
|