File: hes_sparsity.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (420 lines) | stat: -rw-r--r-- 11,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_hes_sparsity.cpp}

Atomic Forward Hessian Sparsity: Example and Test
#################################################

Purpose
*******
This example demonstrates calculation of the Hessian sparsity pattern
for an atomic operation.

Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by

.. math::

   g( x ) = \left( \begin{array}{c}
      x_2 * x_2 \\
      x_0 * x_1
   \end{array} \right)

Jacobian
********
The corresponding Jacobian is

.. math::

   g^{(1)} (x) = \left( \begin{array}{ccc}
     0  &   0 & 2 x_2 \\
   x_1  & x_0 & 0
   \end{array} \right)

Hessians
********
The Hessians of the component functions are

.. math::

   g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
      0 & 0 & 0  \\
      0 & 0 & 0  \\
      0 & 0 & 2
   \end{array} \right)
   \W{,}
   g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
      0 & 1 & 0 \\
      1 & 0 & 0 \\
      0 & 0 & 0
   \end{array} \right)

Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace {          // begin empty namespace
using CppAD::vector; // abbreviate CppAD::vector as vector
//
class atomic_hes_sparsity : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
   atomic_hes_sparsity(const std::string& name) :
   CppAD::atomic_three<double>(name)
   { }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
   // calculate type_y
   bool for_type(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<CppAD::ad_type_enum>&        type_y      ) override
   {  assert( parameter_x.size() == type_x.size() );
      bool ok = type_x.size() == 3; // n
      ok     &= type_y.size() == 2; // m
      if( ! ok )
         return false;

      type_y[0]  = type_x[2];
      type_y[1] = std::max(type_x[0], type_x[1]);
      return true;
   }
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
   // forward mode routine called by CppAD
   bool forward(
      const vector<double>&              parameter_x  ,
      const vector<CppAD::ad_type_enum>& type_x       ,
      size_t                             need_y       ,
      size_t                             order_low    ,
      size_t                             order_up     ,
      const vector<double>&              taylor_x     ,
      vector<double>&                    taylor_y     ) override
   {
# ifndef NDEBUG
      size_t n = taylor_x.size() / (order_up + 1);
      size_t m = taylor_y.size() / (order_up + 1);
# endif
      assert( n == 3 );
      assert( m == 2 );
      assert( order_low <= order_up );

      // return flag
      bool ok = order_up == 0;
      if( ! ok )
         return ok;

      // Order zero forward mode must always be implemented
      taylor_y[0] = taylor_x[2] * taylor_x[2];
      taylor_y[1] = taylor_x[0] * taylor_x[1];

      return ok;
   }
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
   // Jacobian sparsity routine called by CppAD
   bool jac_sparsity(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      bool                                dependency  ,
      const vector<bool>&                 select_x    ,
      const vector<bool>&                 select_y    ,
      CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
   {
      size_t n = select_x.size();
      size_t m = select_y.size();
      assert( n == 3 );
      assert( m == 2 );
      assert( parameter_x.size() == n );

      // count number of non-zeros in sparsity pattern
      size_t nnz = 0;
      // row 0
      if( select_y[0] && select_x[2] )
         ++nnz;
      // row 1
      if( select_y[1] )
      {  // column 0
         if( select_x[0] )
            ++nnz;
         // column 1
         if( select_x[1] )
            ++nnz;
      }

      // size of pattern_out
      size_t nr = m;
      size_t nc = n;
      pattern_out.resize(nr, nc, nnz);
      //
      // set the values in pattern_out using index k
      size_t k = 0;
      //
      // y_0 depends and has possibly non-zeron partial w.r.t x_2
      if( select_y[0] && select_x[2] )
         pattern_out.set(k++, 0, 2);
      if( select_y[1] )
      {  // y_1 depends and has possibly non-zero partial w.r.t x_0
         if( select_x[0] )
            pattern_out.set(k++, 1, 0);
         // y_1 depends and has possibly non-zero partial w.r.t x_1
         if( select_x[1] )
            pattern_out.set(k++, 1, 1);
      }
      assert( k == nnz );
      //
      return true;
   }
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
   // Hessian sparsity routine called by CppAD
   bool hes_sparsity(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      const vector<bool>&                 select_x    ,
      const vector<bool>&                 select_y    ,
      CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
   {  assert( parameter_x.size() == select_x.size() );
      assert( select_y.size() == 2 );
      size_t n = select_x.size();
      assert( n == 3 );
      //
      //            [ 0 , 0 , 0 ]               [ 0 , 1 , 0 ]
      // g_0''(x) = [ 0 , 0 , 0 ]  g_1^'' (x) = [ 1 , 0 , 0 ]
      //            [ 0 , 0 , 2 ]               [ 0 , 0 , 0 ]
      //
      //
      // count number of non-zeros in sparsity pattern
      size_t nnz = 0;
      if( select_y[0] )
      {  if( select_x[2] )
            ++nnz;
      }
      if( select_y[1] )
      {  if( select_x[0] && select_x[1] )
            nnz += 2;
      }
      //
      // size of pattern_out
      size_t nr = n;
      size_t nc = n;
      pattern_out.resize(nr, nc, nnz);
      //
      // set the values in pattern_out using index k
      size_t k = 0;
      //
      // y[1] has possible non-zero second partial w.r.t. x[0], x[1]
      if( select_y[1] )
      {  if( select_x[0] && select_x[1] )
         {  pattern_out.set(k++, 0, 1);
            pattern_out.set(k++, 1, 0);
         }
      }
      //
      // y[0] has possibly non-zero second partial w.r.t x[2], x[2]
      if( select_y[0] )
      {  if( select_x[2] )
            pattern_out.set(k++, 2, 2);
      }
      return true;
   }
}; // End of atomic_for_sparse_hes class

/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool use_hes_sparsity(bool u_1_variable, bool forward)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   //
   // Create the atomic_hes_sparsity object correspnding to g(x)
   atomic_hes_sparsity afun("atomic_hes_sparsity");
   //
   // Create the function f(u) = g(u) for this example.
   //
   // domain space vector
   size_t n  = 3;
   double u_0 = 1.00;
   double u_1 = 2.00;
   double u_2 = 3.00;
   vector< AD<double> > au(n);
   au[0] = u_0;
   au[1] = u_1;
   au[2] = u_2;

   // declare independent variables and start tape recording
   CppAD::Independent(au);

   // range space vector
   size_t m = 2;
   vector< AD<double> > ay(m);

   // call atomic function
   vector< AD<double> > ax(n);
   ax[0] = au[0];
   ax[2] = au[2];
   if( u_1_variable )
   {  ok   &= Variable( au[1] );
      ax[1] = au[1];
   }
   else
   {  AD<double> ap = u_1;
      ok   &= Parameter(ap);
      ok   &= ap == au[1];
      ax[1] = u_1;
   }
   // u_1_variable true:  y = [ u_2 * u_2 ,  u_0 * u_1 ]^T
   // u_1_variable false: y = [ u_2 * u_2 ,  u_0 * p   ]^T
   afun(ax, ay);

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // f(u) = y
   //
   // check function value
   double check = u_2 * u_2;
   ok &= NearEqual( Value(ay[0]) , check,  eps, eps);
   check = u_0 * u_1;
   ok &= NearEqual( Value(ay[1]) , check,  eps, eps);

   // check zero order forward mode
   size_t q;
   vector<double> xq(n), yq(m);
   q     = 0;
   xq[0] = u_0;
   xq[1] = u_1;
   xq[2] = u_2;
   yq    = f.Forward(q, xq);
   check = u_2 * u_2;
   ok &= NearEqual(yq[0] , check,  eps, eps);
   check = u_0 * u_1;
   ok &= NearEqual(yq[1] , check,  eps, eps);

   // select_u
   CPPAD_TESTVECTOR(bool) select_u(n);
   for(size_t j = 0; j < n; j++)
      select_u[j] = true;

   // select_y
   CPPAD_TESTVECTOR(bool) select_y(m);
   for(size_t i = 0; i < m; i++)
      select_y[i] = true;

   // for_hes_sparsity
   bool internal_bool = false;
   CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_out;
   if( forward )
   {  f.for_hes_sparsity(
         select_u, select_y, internal_bool, pattern_out
      );
   }
   else
   {  // pattern for indepentity matrix
      CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in(n, n, n);
      bool transpose  = false;
      bool dependency = false;
      for(size_t k = 0; k < n; ++k)
         pattern_in.set(k, k, k);
      // for_jac_sparsity (ignore pattern_out)
      f.for_jac_sparsity(
         pattern_in, transpose, dependency, internal_bool, pattern_out
      );
      // rev_jac_sparsity
      f.rev_hes_sparsity(
         select_y, transpose, internal_bool, pattern_out
      );
   }
   const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
   const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
   CPPAD_TESTVECTOR(size_t) row_major  = pattern_out.row_major();
   //
   // in row major order first element  has index (0, 1) and second has
   // index (1, 0).  These are only included when u_1 is a variable.
   size_t k = 0, r, c;
   if( u_1_variable )
   {  r   = row[ row_major[k] ];
      c   = col[ row_major[k] ];
      ok &= r == 0 && c == 1;
      ++k;
      r   = row[ row_major[k] ];
      c   = col[ row_major[k] ];
      ok &= r == 1 && c == 0;
      ++k;
   }
   // in row major order next element, in lower triangle of Hessians,
   // has index (2, 2). This element is always included
   r   = row[ row_major[k] ];
   c   = col[ row_major[k] ];
   ok &= r == 2 && c == 2;
   //
   // k + 1 should be the number of values in sparsity pattern
   ok &= k + 1 == pattern_out.nnz();
   //
   return ok;
}
}  // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Test with u_1 Both a Variable and a Parameter
*********************************************
{xrst_spell_off}
{xrst_code cpp} */
bool hes_sparsity(void)
{  bool ok = true;
   //
   bool u_1_variable = true;
   bool forward      = true;
   ok               &= use_hes_sparsity(u_1_variable, forward);
   //
   u_1_variable      = true;
   forward           = false;
   ok               &= use_hes_sparsity(u_1_variable, forward);
   //
   u_1_variable      = false;
   forward           = true;
   ok               &= use_hes_sparsity(u_1_variable, forward);
   //
   u_1_variable      = false;
   forward           = false;
   ok               &= use_hes_sparsity(u_1_variable, forward);
   //
   return ok;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end atomic_three_hes_sparsity.cpp}
*/