1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_hes_sparsity.cpp}
Atomic Forward Hessian Sparsity: Example and Test
#################################################
Purpose
*******
This example demonstrates calculation of the Hessian sparsity pattern
for an atomic operation.
Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by
.. math::
g( x ) = \left( \begin{array}{c}
x_2 * x_2 \\
x_0 * x_1
\end{array} \right)
Jacobian
********
The corresponding Jacobian is
.. math::
g^{(1)} (x) = \left( \begin{array}{ccc}
0 & 0 & 2 x_2 \\
x_1 & x_0 & 0
\end{array} \right)
Hessians
********
The Hessians of the component functions are
.. math::
g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array} \right)
\W{,}
g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array} \right)
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // begin empty namespace
using CppAD::vector; // abbreviate CppAD::vector as vector
//
class atomic_hes_sparsity : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
atomic_hes_sparsity(const std::string& name) :
CppAD::atomic_three<double>(name)
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 3; // n
ok &= type_y.size() == 2; // m
if( ! ok )
return false;
type_y[0] = type_x[2];
type_y[1] = std::max(type_x[0], type_x[1]);
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector<double>& taylor_x ,
vector<double>& taylor_y ) override
{
# ifndef NDEBUG
size_t n = taylor_x.size() / (order_up + 1);
size_t m = taylor_y.size() / (order_up + 1);
# endif
assert( n == 3 );
assert( m == 2 );
assert( order_low <= order_up );
// return flag
bool ok = order_up == 0;
if( ! ok )
return ok;
// Order zero forward mode must always be implemented
taylor_y[0] = taylor_x[2] * taylor_x[2];
taylor_y[1] = taylor_x[0] * taylor_x[1];
return ok;
}
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Jacobian sparsity routine called by CppAD
bool jac_sparsity(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
bool dependency ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
size_t n = select_x.size();
size_t m = select_y.size();
assert( n == 3 );
assert( m == 2 );
assert( parameter_x.size() == n );
// count number of non-zeros in sparsity pattern
size_t nnz = 0;
// row 0
if( select_y[0] && select_x[2] )
++nnz;
// row 1
if( select_y[1] )
{ // column 0
if( select_x[0] )
++nnz;
// column 1
if( select_x[1] )
++nnz;
}
// size of pattern_out
size_t nr = m;
size_t nc = n;
pattern_out.resize(nr, nc, nnz);
//
// set the values in pattern_out using index k
size_t k = 0;
//
// y_0 depends and has possibly non-zeron partial w.r.t x_2
if( select_y[0] && select_x[2] )
pattern_out.set(k++, 0, 2);
if( select_y[1] )
{ // y_1 depends and has possibly non-zero partial w.r.t x_0
if( select_x[0] )
pattern_out.set(k++, 1, 0);
// y_1 depends and has possibly non-zero partial w.r.t x_1
if( select_x[1] )
pattern_out.set(k++, 1, 1);
}
assert( k == nnz );
//
return true;
}
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Hessian sparsity routine called by CppAD
bool hes_sparsity(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{ assert( parameter_x.size() == select_x.size() );
assert( select_y.size() == 2 );
size_t n = select_x.size();
assert( n == 3 );
//
// [ 0 , 0 , 0 ] [ 0 , 1 , 0 ]
// g_0''(x) = [ 0 , 0 , 0 ] g_1^'' (x) = [ 1 , 0 , 0 ]
// [ 0 , 0 , 2 ] [ 0 , 0 , 0 ]
//
//
// count number of non-zeros in sparsity pattern
size_t nnz = 0;
if( select_y[0] )
{ if( select_x[2] )
++nnz;
}
if( select_y[1] )
{ if( select_x[0] && select_x[1] )
nnz += 2;
}
//
// size of pattern_out
size_t nr = n;
size_t nc = n;
pattern_out.resize(nr, nc, nnz);
//
// set the values in pattern_out using index k
size_t k = 0;
//
// y[1] has possible non-zero second partial w.r.t. x[0], x[1]
if( select_y[1] )
{ if( select_x[0] && select_x[1] )
{ pattern_out.set(k++, 0, 1);
pattern_out.set(k++, 1, 0);
}
}
//
// y[0] has possibly non-zero second partial w.r.t x[2], x[2]
if( select_y[0] )
{ if( select_x[2] )
pattern_out.set(k++, 2, 2);
}
return true;
}
}; // End of atomic_for_sparse_hes class
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool use_hes_sparsity(bool u_1_variable, bool forward)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// Create the atomic_hes_sparsity object correspnding to g(x)
atomic_hes_sparsity afun("atomic_hes_sparsity");
//
// Create the function f(u) = g(u) for this example.
//
// domain space vector
size_t n = 3;
double u_0 = 1.00;
double u_1 = 2.00;
double u_2 = 3.00;
vector< AD<double> > au(n);
au[0] = u_0;
au[1] = u_1;
au[2] = u_2;
// declare independent variables and start tape recording
CppAD::Independent(au);
// range space vector
size_t m = 2;
vector< AD<double> > ay(m);
// call atomic function
vector< AD<double> > ax(n);
ax[0] = au[0];
ax[2] = au[2];
if( u_1_variable )
{ ok &= Variable( au[1] );
ax[1] = au[1];
}
else
{ AD<double> ap = u_1;
ok &= Parameter(ap);
ok &= ap == au[1];
ax[1] = u_1;
}
// u_1_variable true: y = [ u_2 * u_2 , u_0 * u_1 ]^T
// u_1_variable false: y = [ u_2 * u_2 , u_0 * p ]^T
afun(ax, ay);
// create f: u -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (au, ay); // f(u) = y
//
// check function value
double check = u_2 * u_2;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual( Value(ay[1]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> xq(n), yq(m);
q = 0;
xq[0] = u_0;
xq[1] = u_1;
xq[2] = u_2;
yq = f.Forward(q, xq);
check = u_2 * u_2;
ok &= NearEqual(yq[0] , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual(yq[1] , check, eps, eps);
// select_u
CPPAD_TESTVECTOR(bool) select_u(n);
for(size_t j = 0; j < n; j++)
select_u[j] = true;
// select_y
CPPAD_TESTVECTOR(bool) select_y(m);
for(size_t i = 0; i < m; i++)
select_y[i] = true;
// for_hes_sparsity
bool internal_bool = false;
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_out;
if( forward )
{ f.for_hes_sparsity(
select_u, select_y, internal_bool, pattern_out
);
}
else
{ // pattern for indepentity matrix
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in(n, n, n);
bool transpose = false;
bool dependency = false;
for(size_t k = 0; k < n; ++k)
pattern_in.set(k, k, k);
// for_jac_sparsity (ignore pattern_out)
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
// rev_jac_sparsity
f.rev_hes_sparsity(
select_y, transpose, internal_bool, pattern_out
);
}
const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
CPPAD_TESTVECTOR(size_t) row_major = pattern_out.row_major();
//
// in row major order first element has index (0, 1) and second has
// index (1, 0). These are only included when u_1 is a variable.
size_t k = 0, r, c;
if( u_1_variable )
{ r = row[ row_major[k] ];
c = col[ row_major[k] ];
ok &= r == 0 && c == 1;
++k;
r = row[ row_major[k] ];
c = col[ row_major[k] ];
ok &= r == 1 && c == 0;
++k;
}
// in row major order next element, in lower triangle of Hessians,
// has index (2, 2). This element is always included
r = row[ row_major[k] ];
c = col[ row_major[k] ];
ok &= r == 2 && c == 2;
//
// k + 1 should be the number of values in sparsity pattern
ok &= k + 1 == pattern_out.nnz();
//
return ok;
}
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Test with u_1 Both a Variable and a Parameter
*********************************************
{xrst_spell_off}
{xrst_code cpp} */
bool hes_sparsity(void)
{ bool ok = true;
//
bool u_1_variable = true;
bool forward = true;
ok &= use_hes_sparsity(u_1_variable, forward);
//
u_1_variable = true;
forward = false;
ok &= use_hes_sparsity(u_1_variable, forward);
//
u_1_variable = false;
forward = true;
ok &= use_hes_sparsity(u_1_variable, forward);
//
u_1_variable = false;
forward = false;
ok &= use_hes_sparsity(u_1_variable, forward);
//
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_hes_sparsity.cpp}
*/
|