1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_jac_sparsity.cpp}
Atomic Function Jacobian Sparsity: Example and Test
###################################################
Purpose
*******
This example demonstrates calculation of a Jacobian sparsity pattern
using an atomic operation.
Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by
.. math::
g(x) = \left( \begin{array}{c}
x_2 * x_2 \\
x_0 * x_1
\end{array} \right)
Jacobian
********
The corresponding Jacobian is
.. math::
g^{(1)} (x) = \left( \begin{array}{ccc}
0 & 0 & 2 x_2 \\
x_1 & x_0 & 0
\end{array} \right)
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // begin empty namespace
using CppAD::vector; // abbreviate CppAD::vector as vector
//
class atomic_jac_sparsity : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
atomic_jac_sparsity(const std::string& name) :
CppAD::atomic_three<double>(name)
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 3; // n
ok &= type_y.size() == 2; // m
if( ! ok )
return false;
type_y[0] = type_x[2];
type_y[1] = std::max(type_x[0], type_x[1]);
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector<double>& taylor_x ,
vector<double>& taylor_y ) override
{
# ifndef NDEBUG
size_t n = taylor_x.size() / (order_up + 1);
size_t m = taylor_y.size() / (order_up + 1);
# endif
assert( n == 3 );
assert( m == 2 );
assert( order_low <= order_up );
// return flag
bool ok = order_up == 0;
if( ! ok )
return ok;
// Order zero forward mode must always be implemented
taylor_y[0] = taylor_x[2] * taylor_x[2];
taylor_y[1] = taylor_x[0] * taylor_x[1];
return ok;
}
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Jacobian sparsity routine called by CppAD
bool jac_sparsity(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
bool dependency ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
size_t n = select_x.size();
size_t m = select_y.size();
assert( parameter_x.size() == n );
assert( n == 3 );
assert( m == 2 );
// count number of non-zeros in sparsity pattern
size_t nnz = 0;
// row 0
if( select_y[0] && select_x[2] )
++nnz;
// row 1
if( select_y[1] )
{ // column 0
if( select_x[0] )
++nnz;
// column 1
if( select_x[1] )
++nnz;
}
// size of pattern_out
size_t nr = m;
size_t nc = n;
pattern_out.resize(nr, nc, nnz);
// set the values in pattern_out using index k
size_t k = 0;
// y_0 depends and has possibly non-zeron partial w.r.t x_2
if( select_y[0] && select_x[2] )
pattern_out.set(k++, 0, 2);
if( select_y[1] )
{ // y_1 depends and has possibly non-zero partial w.r.t x_0
if( select_x[0] )
pattern_out.set(k++, 1, 0);
// y_1 depends and has possibly non-zero partial w.r.t x_1
if( select_x[1] )
pattern_out.set(k++, 1, 1);
}
assert( k == nnz );
//
return true;
}
}; // End of atomic_three_jac_sparsity class
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool use_jac_sparsity(bool x_1_variable, bool forward)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// Create the atomic_jac_sparsity object correspnding to g(x)
atomic_jac_sparsity afun("atomic_jac_sparsity");
//
// Create the function f(u) = g(u) for this example.
//
// domain space vector
size_t n = 3;
double u_0 = 1.00;
double u_1 = 2.00;
double u_2 = 3.00;
vector< AD<double> > au(n);
au[0] = u_0;
au[1] = u_1;
au[2] = u_2;
// declare independent variables and start tape recording
CppAD::Independent(au);
// range space vector
size_t m = 2;
vector< AD<double> > ay(m);
// call atomic function
vector< AD<double> > ax(n);
ax[0] = au[0];
ax[2] = au[2];
if( x_1_variable )
{ ok &= Variable( au[1] );
ax[1] = au[1];
}
else
{ AD<double> ap = u_1;
ok &= Parameter(ap);
ok &= ap == au[1];
ax[1] = u_1;
}
// x_1_variable true: y = [ u_2 * u_2 , u_0 * u_1 ]^T
// x_1_variable false: y = [ u_2 * u_2 , u_0 * p ]^T
afun(ax, ay);
// create f: u -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (au, ay); // f(u) = y
//
// check function value
double check = u_2 * u_2;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual( Value(ay[1]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> xq(n), yq(m);
q = 0;
xq[0] = u_0;
xq[1] = u_1;
xq[2] = u_2;
yq = f.Forward(q, xq);
check = u_2 * u_2;
ok &= NearEqual(yq[0] , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual(yq[1] , check, eps, eps);
// sparsity pattern for identity matrix
size_t nnz;
if( forward )
nnz = n;
else
nnz = m;
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in(nnz, nnz, nnz);
for(size_t k = 0; k < nnz; ++k)
pattern_in.set(k, k, k);
// Jacobian sparsity for f(u)
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_out;
if( forward )
{ f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
}
else
{ f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
}
const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
CPPAD_TESTVECTOR(size_t) row_major = pattern_out.row_major();
//
// first element in row major order has index (0, 2)
size_t k = 0;
size_t r = row[ row_major[k] ];
size_t c = col[ row_major[k] ];
ok &= r == 0 && c == 2;
//
// second element in row major order has index (1, 0)
++k;
r = row[ row_major[k] ];
c = col[ row_major[k] ];
ok &= r == 1 && c == 0;
//
if( x_1_variable )
{ // third element in row major order has index (1, 1)
++k;
r = row[ row_major[k] ];
c = col[ row_major[k] ];
ok &= r == 1 && c == 1;
}
// k + 1 should be the number of values in sparsity pattern
ok &= k + 1 == pattern_out.nnz();
//
return ok;
}
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Test with u_1 Both a Variable and a Parameter
*********************************************
{xrst_spell_off}
{xrst_code cpp} */
bool jac_sparsity(void)
{ bool ok = true;
//
bool u_1_variable = true;
bool forward = true;
ok &= use_jac_sparsity(u_1_variable, forward);
//
u_1_variable = true;
forward = false;
ok &= use_jac_sparsity(u_1_variable, forward);
//
u_1_variable = false;
forward = true;
ok &= use_jac_sparsity(u_1_variable, forward);
//
u_1_variable = false;
forward = false;
ok &= use_jac_sparsity(u_1_variable, forward);
//
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_jac_sparsity.cpp}
*/
|