1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_mat_mul.cpp}
User Atomic Matrix Multiply: Example and Test
#############################################
See Also
********
:ref:`atomic_two_eigen_mat_mul.cpp-name`
{xrst_toc_hidden
include/cppad/example/atomic_three/mat_mul.hpp
}
Class Definition
****************
This example uses the file :ref:`atomic_three_mat_mul.hpp-name`
which defines matrix multiply as a :ref:`atomic_three-name` operation.
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_three/mat_mul.hpp>
bool mat_mul(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::vector;
size_t i, j;
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// -------------------------------------------------------------------
// object that multiplies 2 x 2 matrices
atomic_mat_mul afun;
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
// start recording with four independent varables
size_t n = 4;
vector<double> x(n);
vector< AD<double> > ax(n);
for(j = 0; j < n; j++)
ax[j] = x[j] = double(j + 1);
CppAD::Independent(ax);
// ------------------------------------------------------------------
size_t nr_left = 2;
size_t n_middle = 2;
size_t nc_right = 2;
vector< AD<double> > atom_x(3 + (nr_left + nc_right) * n_middle );
// matrix dimensions
atom_x[0] = AD<double>( nr_left );
atom_x[1] = AD<double>( n_middle );
atom_x[2] = AD<double>( nc_right );
// left matrix
atom_x[3] = ax[0]; // left[0, 0] = x0
atom_x[4] = ax[1]; // left[0, 1] = x1
atom_x[5] = 5.; // left[1, 0] = 5
atom_x[6] = 6.; // left[1, 1] = 6
// right matix
atom_x[7] = ax[2]; // right[0, 0] = x2
atom_x[8] = 7.; // right[0, 1] = 7
atom_x[9] = ax[3]; // right[1, 0] = x3
atom_x[10] = 8.; // right[1, 1] = 8
// ------------------------------------------------------------------
/*
[ x0 , x1 ] * [ x2 , 7 ] = [ x0*x2 + x1*x3 , x0*7 + x1*8 ]
[ 5 , 6 ] [ x3 , 8 ] [ 5*x2 + 6*x3 , 5*7 + 6*8 ]
*/
vector< AD<double> > atom_y(nr_left * nc_right);
afun(atom_x, atom_y);
ok &= (atom_y[0] == x[0]*x[2] + x[1]*x[3]) && Variable(atom_y[0]);
ok &= (atom_y[1] == x[0]*7. + x[1]*8. ) && Variable(atom_y[1]);
ok &= (atom_y[2] == 5.*x[2] + 6.*x[3]) && Variable(atom_y[2]);
ok &= (atom_y[3] == 5.*7. + 6.*8. ) && Parameter(atom_y[3]);
// ------------------------------------------------------------------
// define the function g : x -> atom_y
// g(x) = [ x0*x2 + x1*x3 , x0*7 + x1*8 , 5*x2 + 6*x3 , 5*7 + 6*8 ]^T
CppAD::ADFun<double> g(ax, atom_y);
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
// Test zero order forward mode evaluation of g(x)
size_t m = atom_y.size();
vector<double> y(m);
for(j = 0; j < n; j++)
x[j] = double(j + 2);
y = g.Forward(0, x);
ok &= y[0] == x[0] * x[2] + x[1] * x[3];
ok &= y[1] == x[0] * 7. + x[1] * 8.;
ok &= y[2] == 5. * x[2] + 6. * x[3];
ok &= y[3] == 5. * 7. + 6. * 8.;
//----------------------------------------------------------------------
// Test first order forward mode evaluation of g'(x) * [1, 2, 3, 4]^T
// g'(x) = [ x2, x3, x0, x1 ]
// [ 7 , 8, 0, 0 ]
// [ 0 , 0, 5, 6 ]
// [ 0 , 0, 0, 0 ]
CppAD::vector<double> dx(n), dy(m);
for(j = 0; j < n; j++)
dx[j] = double(j + 1);
dy = g.Forward(1, dx);
ok &= dy[0] == 1. * x[2] + 2. * x[3] + 3. * x[0] + 4. * x[1];
ok &= dy[1] == 1. * 7. + 2. * 8. + 3. * 0. + 4. * 0.;
ok &= dy[2] == 1. * 0. + 2. * 0. + 3. * 5. + 4. * 6.;
ok &= dy[3] == 1. * 0. + 2. * 0. + 3. * 0. + 4. * 0.;
//----------------------------------------------------------------------
// Test second order forward mode
// g_0^2 (x) = [ 0, 0, 1, 0 ], g_0^2 (x) * [1] = [3]
// [ 0, 0, 0, 1 ] [2] [4]
// [ 1, 0, 0, 0 ] [3] [1]
// [ 0, 1, 0, 0 ] [4] [2]
CppAD::vector<double> ddx(n), ddy(m);
for(j = 0; j < n; j++)
ddx[j] = 0.;
ddy = g.Forward(2, ddx);
// [1, 2, 3, 4] * g_0^2 (x) * [1, 2, 3, 4]^T = 1*3 + 2*4 + 3*1 + 4*2
ok &= 2. * ddy[0] == 1. * 3. + 2. * 4. + 3. * 1. + 4. * 2.;
// for i > 0, [1, 2, 3, 4] * g_i^2 (x) * [1, 2, 3, 4]^T = 0
ok &= ddy[1] == 0.;
ok &= ddy[2] == 0.;
ok &= ddy[3] == 0.;
/* {xrst_code}
{xrst_spell_on}
reverse
=======
{xrst_spell_off}
{xrst_code cpp} */
// Test second order reverse mode
CppAD::vector<double> w(m), dw(2 * n);
for(i = 0; i < m; i++)
w[i] = 0.;
w[0] = 1.;
dw = g.Reverse(2, w);
// g_0'(x) = [ x2, x3, x0, x1 ]
ok &= dw[0*2 + 0] == x[2];
ok &= dw[1*2 + 0] == x[3];
ok &= dw[2*2 + 0] == x[0];
ok &= dw[3*2 + 0] == x[1];
// g_0'(x) * [1, 2, 3, 4] = 1 * x2 + 2 * x3 + 3 * x0 + 4 * x1
// g_0^2 (x) * [1, 2, 3, 4] = [3, 4, 1, 2]
ok &= dw[0*2 + 1] == 3.;
ok &= dw[1*2 + 1] == 4.;
ok &= dw[2*2 + 1] == 1.;
ok &= dw[3*2 + 1] == 2.;
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
============
{xrst_spell_off}
{xrst_code cpp} */
// sparsity pattern for the Jacobian
// g'(x) = [ x2, x3, x0, x1 ]
// [ 7, 8, 0, 0 ]
// [ 0, 0, 5, 6 ]
// [ 0, 0, 0, 0 ]
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
// test both forward and reverse mode
for(size_t forward_mode = 0; forward_mode <= 1; ++forward_mode)
{ if( bool(forward_mode) )
{ pattern_in.resize(n, n, n);
for(j = 0; j < n; ++j)
pattern_in.set(j, j, j);
g.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
}
else
{ pattern_in.resize(m, m, m);
for(i = 0; i < m; ++i)
pattern_in.set(i, i, i);
g.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
}
const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
CPPAD_TESTVECTOR(size_t) row_major = pattern_out.row_major();
size_t k = 0;
for(j = 0; j < n; ++j)
{ ok &= row[ row_major[k] ] == 0; // (0, j)
ok &= col[ row_major[k] ] == j;
++k;
}
ok &= row[ row_major[k] ] == 1; // (1, 0)
ok &= col[ row_major[k] ] == 0; //
++k;
ok &= row[ row_major[k] ] == 1; // (1, 1)
ok &= col[ row_major[k] ] == 1; //
++k;
ok &= row[ row_major[k] ] == 2; // (2, 2)
ok &= col[ row_major[k] ] == 2; //
++k;
ok &= row[ row_major[k] ] == 2; // (2, 3)
ok &= col[ row_major[k] ] == 3; //
++k;
ok &= pattern_out.nnz() == k;
}
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
============
{xrst_spell_off}
{xrst_code cpp} */
/* Hessian sparsity pattern
g_0^2 (x) = [ 0, 0, 1, 0 ] and for i > 0, g_i^2 = 0
[ 0, 0, 0, 1 ]
[ 1, 0, 0, 0 ]
[ 0, 1, 0, 0 ]
*/
CPPAD_TESTVECTOR(bool) select_x(n), select_y(m);
for(j = 0; j < n; ++j)
select_x[j] = true;
for(i = 0; i < m; ++i)
select_y[i] = true;
for(size_t forward_mode = 0; forward_mode <= 1; ++forward_mode)
{ if( bool(forward_mode) )
{ g.for_hes_sparsity(
select_y, select_x, internal_bool, pattern_out
);
}
else
{ // results for for_jac_sparsity are stored in g
g.rev_hes_sparsity(
select_y, transpose, internal_bool, pattern_out
);
}
const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
CPPAD_TESTVECTOR(size_t) row_major = pattern_out.row_major();
size_t k = 0;
ok &= row[ row_major[k] ] == 0; // (0, 2)
ok &= col[ row_major[k] ] == 2;
++k;
ok &= row[ row_major[k] ] == 1; // (1, 3)
ok &= col[ row_major[k] ] == 3;
++k;
ok &= row[ row_major[k] ] == 2; // (2, 0)
ok &= col[ row_major[k] ] == 0;
++k;
ok &= row[ row_major[k] ] == 3; // (3, 1)
ok &= col[ row_major[k] ] == 1;
++k;
ok &= pattern_out.nnz() == k;
}
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_mat_mul.cpp}
*/
|