1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_reciprocal.cpp}
Reciprocal as an Atomic Operation: Example and Test
###################################################
Function
********
This example demonstrates using :ref:`atomic_three-name`
to define the operation
:math:`g : \B{R}^n \rightarrow \B{R}^m` where
:math:`n = 1`, :math:`m = 1`, and :math:`g(x) = 1 / x`.
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // isolate items below to this file
using CppAD::vector; // abbreivate CppAD::vector as vector
//
class atomic_reciprocal : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
atomic_reciprocal(const std::string& name) :
CppAD::atomic_three<double>(name)
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 1; // n
ok &= type_y.size() == 1; // m
if( ! ok )
return false;
type_y[0] = type_x[0];
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t p ,
size_t q ,
const vector<double>& tx ,
vector<double>& ty ) override
{
# ifndef NDEBUG
size_t n = tx.size() / (q + 1);
size_t m = ty.size() / (q + 1);
# endif
assert( type_x.size() == n );
assert( n == 1 );
assert( m == 1 );
assert( p <= q );
// return flag
bool ok = q <= 2;
// Order zero forward mode.
// This case must always be implemented
// y^0 = g( x^0 ) = 1 / x^0
double g = 1. / tx[0];
if( p <= 0 )
ty[0] = g;
if( q <= 0 )
return ok;
// Order one forward mode.
// This case needed if first order forward mode is used.
// y^1 = g'( x^0 ) x^1
double gp = - g / tx[0];
if( p <= 1 )
ty[1] = gp * tx[1];
if( q <= 1 )
return ok;
// Order two forward mode.
// This case needed if second order forward mode is used.
// Y''(t) = X'(t)^\R{T} g''[X(t)] X'(t) + g'[X(t)] X''(t)
// 2 y^2 = x^1 * g''( x^0 ) x^1 + 2 g'( x^0 ) x^2
double gpp = - 2.0 * gp / tx[0];
ty[2] = tx[1] * gpp * tx[1] / 2.0 + gp * tx[2];
if( q <= 2 )
return ok;
// Assume we are not using forward mode with order > 2
assert( ! ok );
return ok;
}
/* {xrst_code}
{xrst_spell_on}
reverse
*******
{xrst_spell_off}
{xrst_code cpp} */
// reverse mode routine called by CppAD
bool reverse(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t q ,
const vector<double>& tx ,
const vector<double>& ty ,
vector<double>& px ,
const vector<double>& py ) override
{
# ifndef NDEBUG
size_t n = tx.size() / (q + 1);
size_t m = ty.size() / (q + 1);
# endif
assert( px.size() == tx.size() );
assert( py.size() == ty.size() );
assert( n == 1 );
assert( m == 1 );
bool ok = q <= 2;
double g, gp, gpp, gppp;
switch(q)
{ case 0:
// This case needed if first order reverse mode is used
// reverse: F^0 ( tx ) = y^0 = g( x^0 )
g = ty[0];
gp = - g / tx[0];
px[0] = py[0] * gp;;
assert(ok);
break;
case 1:
// This case needed if second order reverse mode is used
// reverse: F^1 ( tx ) = y^1 = g'( x^0 ) x^1
g = ty[0];
gp = - g / tx[0];
gpp = - 2.0 * gp / tx[0];
px[1] = py[1] * gp;
px[0] = py[1] * gpp * tx[1];
// reverse: F^0 ( tx ) = y^0 = g( x^0 );
px[0] += py[0] * gp;
assert(ok);
break;
case 2:
// This needed if third order reverse mode is used
// reverse: F^2 ( tx ) = y^2 =
// = x^1 * g''( x^0 ) x^1 / 2 + g'( x^0 ) x^2
g = ty[0];
gp = - g / tx[0];
gpp = - 2.0 * gp / tx[0];
gppp = - 3.0 * gpp / tx[0];
px[2] = py[2] * gp;
px[1] = py[2] * gpp * tx[1];
px[0] = py[2] * tx[1] * gppp * tx[1] / 2.0 + gpp * tx[2];
// reverse: F^1 ( tx ) = y^1 = g'( x^0 ) x^1
px[1] += py[1] * gp;
px[0] += py[1] * gpp * tx[1];
// reverse: F^0 ( tx ) = y^0 = g( x^0 );
px[0] += py[0] * gp;
assert(ok);
break;
default:
assert(!ok);
}
return ok;
}
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Jacobian sparsity routine called by CppAD
bool jac_sparsity(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
bool dependency ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
size_t n = select_x.size();
size_t m = select_y.size();
assert( parameter_x.size() == n );
assert( n == 1 );
assert( m == 1 );
// size of pattern_out
size_t nr = m;
size_t nc = n;
size_t nnz = 0;
if( select_x[0] && select_y[0] )
++nnz;
pattern_out.resize(nr, nc, nnz);
// set values in pattern_out
size_t k = 0;
if( select_x[0] && select_y[0] )
pattern_out.set(k++, 0, 0);
assert( k == nnz );
return true;
}
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Hessian sparsity routine called by CppAD
bool hes_sparsity(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
assert( parameter_x.size() == select_x.size() );
assert( select_y.size() == 1 );
size_t n = select_x.size();
assert( n == 1 );
// size of pattern_out
size_t nr = n;
size_t nc = n;
size_t nnz = 0;
if( select_x[0] && select_y[0] )
++nnz;
pattern_out.resize(nr, nc, nnz);
// set values in pattern_out
size_t k = 0;
if( select_x[0] && select_y[0] )
pattern_out.set(k++, 0, 0);
assert( k == nnz );
return true;
}
/* {xrst_code}
{xrst_spell_on}
End Class Definition
********************
{xrst_spell_off}
{xrst_code cpp} */
}; // End of atomic_reciprocal class
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool reciprocal(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// --------------------------------------------------------------------
// Create the atomic reciprocal object
atomic_reciprocal afun("atomic_reciprocal");
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
// Create the function f(x) = 1 / g(x) = x
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > av(m);
// call atomic function and store g(x) in au[0]
vector< AD<double> > au(m);
afun(ax, au); // u = 1 / x
// now use AD division to invert to invert the operation
av[0] = 1.0 / au[0]; // v = 1 / u = x
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, av); // g(x) = x
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
// check function value
double check = x0;
ok &= NearEqual( Value(av[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> x_q(n), v_q(m);
q = 0;
x_q[0] = x0;
v_q = f.Forward(q, x_q);
ok &= NearEqual(v_q[0] , check, eps, eps);
// check first order forward mode
q = 1;
x_q[0] = 1;
v_q = f.Forward(q, x_q);
check = 1.0;
ok &= NearEqual(v_q[0] , check, eps, eps);
// check second order forward mode
q = 2;
x_q[0] = 0;
v_q = f.Forward(q, x_q);
check = 0.;
ok &= NearEqual(v_q[0] , check, eps, eps);
/* {xrst_code}
{xrst_spell_on}
reverse
=======
{xrst_spell_off}
{xrst_code cpp} */
// third order reverse mode
q = 3;
vector<double> w(m), dw(n * q);
w[0] = 1.;
dw = f.Reverse(q, w);
check = 1.;
ok &= NearEqual(dw[0] , check, eps, eps);
check = 0.;
ok &= NearEqual(dw[1] , check, eps, eps);
ok &= NearEqual(dw[2] , check, eps, eps);
/* {xrst_code}
{xrst_spell_on}
for_jac_sparsity
================
{xrst_spell_off}
{xrst_code cpp} */
// forward mode Jacobian sparstiy pattern
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
pattern_in.resize(1, 1, 1);
pattern_in.set(0, 0, 0);
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
ok &= pattern_out.nnz() == 1;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
/* {xrst_code}
{xrst_spell_on}
rev_sparse_jac
==============
{xrst_spell_off}
{xrst_code cpp} */
// reverse mode Jacobian sparstiy pattern
f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
ok &= pattern_out.nnz() == 1;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
/* {xrst_code}
{xrst_spell_on}
rev_sparse_hes
==============
{xrst_spell_off}
{xrst_code cpp} */
// Hessian sparsity (using previous for_jac_sparsity call)
CPPAD_TESTVECTOR(bool) select_y(m);
select_y[0] = true;
f.rev_hes_sparsity(
select_y, transpose, internal_bool, pattern_out
);
ok &= pattern_out.nnz() == 1;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
/* {xrst_code}
{xrst_spell_on}
for_sparse_hes
==============
{xrst_spell_off}
{xrst_code cpp} */
// Hessian sparsity
CPPAD_TESTVECTOR(bool) select_x(n);
select_x[0] = true;
f.for_hes_sparsity(
select_x, select_y, internal_bool, pattern_out
);
ok &= pattern_out.nnz() == 1;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_reciprocal.cpp}
*/
|