1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_reverse.cpp}
Atomic Functions and Reverse Mode: Example and Test
###################################################
Purpose
*******
This example demonstrates reverse mode derivative calculation
using an :ref:`atomic_three-name` function.
Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by
.. math::
g(x) = \left( \begin{array}{c}
x_2 * x_2 \\
x_0 * x_1
\end{array} \right)
Jacobian
********
The corresponding Jacobian is
.. math::
g^{(1)} (x) = \left( \begin{array}{ccc}
0 & 0 & 2 x_2 \\
x_1 & x_0 & 0
\end{array} \right)
Hessian
*******
The Hessians of the component functions are
.. math::
g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array} \right)
\W{,}
g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array} \right)
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // isolate items below to this file
using CppAD::vector; // abbreviate as vector
//
class atomic_reverse : public CppAD::atomic_three<double> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
public:
atomic_reverse(const std::string& name) :
CppAD::atomic_three<double>(name)
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 3; // n
ok &= type_y.size() == 2; // m
if( ! ok )
return false;
type_y[0] = type_x[2];
type_y[1] = std::max(type_x[0], type_x[1]);
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t order_low ,
size_t order_up ,
const vector<double>& taylor_x ,
vector<double>& taylor_y ) override
{
size_t q1 = order_up + 1;
# ifndef NDEBUG
size_t n = taylor_x.size() / q1;
size_t m = taylor_y.size() / q1;
# endif
assert( n == 3 );
assert( m == 2 );
assert( order_low <= order_up );
// this example only implements up to first order forward mode
bool ok = order_up <= 1;
if( ! ok )
return ok;
// ------------------------------------------------------------------
// Zero forward mode.
// This case must always be implemented
// g(x) = [ x_2 * x_2 ]
// [ x_0 * x_1 ]
// y^0 = f( x^0 )
if( order_low <= 0 )
{ // y_0^0 = x_2^0 * x_2^0
taylor_y[0*q1+0] = taylor_x[2*q1+0] * taylor_x[2*q1+0];
// y_1^0 = x_0^0 * x_1^0
taylor_y[1*q1+0] = taylor_x[0*q1+0] * taylor_x[1*q1+0];
}
if( order_up <= 0 )
return ok;
// ------------------------------------------------------------------
// First order one forward mode.
// This case is needed if first order forward mode is used.
// g'(x) = [ 0, 0, 2 * x_2 ]
// [ x_1, x_0, 0 ]
// y^1 = f'(x^0) * x^1
if( order_low <= 1 )
{ // y_0^1 = 2 * x_2^0 * x_2^1
taylor_y[0*q1+1] = 2.0 * taylor_x[2*q1+0] * taylor_x[2*q1+1];
// y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
taylor_y[1*q1+1] = taylor_x[1*q1+0] * taylor_x[0*q1+1];
taylor_y[1*q1+1] += taylor_x[0*q1+0] * taylor_x[1*q1+1];
}
return ok;
}
/* {xrst_code}
{xrst_spell_on}
reverse
*******
{xrst_spell_off}
{xrst_code cpp} */
// reverse mode routine called by CppAD
bool reverse(
const vector<double>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t order_up ,
const vector<double>& taylor_x ,
const vector<double>& taylor_y ,
vector<double>& partial_x ,
const vector<double>& partial_y ) override
{
size_t q1 = order_up + 1;
size_t n = taylor_x.size() / q1;
# ifndef NDEBUG
size_t m = taylor_y.size() / q1;
# endif
assert( n == 3 );
assert( m == 2 );
// this example only implements up to second order reverse mode
bool ok = q1 <= 2;
if( ! ok )
return ok;
//
// initalize summation as zero
for(size_t j = 0; j < n; j++)
for(size_t k = 0; k < q1; k++)
partial_x[j * q1 + k] = 0.0;
//
if( q1 == 2 )
{ // --------------------------------------------------------------
// Second order reverse first compute partials of first order
// We use the notation pg_ij^k for partial of F_i^1 w.r.t. x_j^k
//
// y_0^1 = 2 * x_2^0 * x_2^1
// pg_02^0 = 2 * x_2^1
// pg_02^1 = 2 * x_2^0
//
// y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
// pg_10^0 = x_1^1
// pg_11^0 = x_0^1
// pg_10^1 = x_1^0
// pg_11^1 = x_0^0
//
// px_0^0 += py_0^1 * pg_00^0 + py_1^1 * pg_10^0
// += py_1^1 * x_1^1
partial_x[0*q1+0] += partial_y[1*q1+1] * taylor_x[1*q1+1];
//
// px_0^1 += py_0^1 * pg_00^1 + py_1^1 * pg_10^1
// += py_1^1 * x_1^0
partial_x[0*q1+1] += partial_y[1*q1+1] * taylor_x[1*q1+0];
//
// px_1^0 += py_0^1 * pg_01^0 + py_1^1 * pg_11^0
// += py_1^1 * x_0^1
partial_x[1*q1+0] += partial_y[1*q1+1] * taylor_x[0*q1+1];
//
// px_1^1 += py_0^1 * pg_01^1 + py_1^1 * pg_11^1
// += py_1^1 * x_0^0
partial_x[1*q1+1] += partial_y[1*q1+1] * taylor_x[0*q1+0];
//
// px_2^0 += py_0^1 * pg_02^0 + py_1^1 * pg_12^0
// += py_0^1 * 2 * x_2^1
partial_x[2*q1+0] += partial_y[0*q1+1] * 2.0 * taylor_x[2*q1+1];
//
// px_2^1 += py_0^1 * pg_02^1 + py_1^1 * pg_12^1
// += py_0^1 * 2 * x_2^0
partial_x[2*q1+1] += partial_y[0*q1+1] * 2.0 * taylor_x[2*q1+0];
}
// --------------------------------------------------------------
// First order reverse computes partials of zero order coefficients
// We use the notation pg_ij for partial of F_i^0 w.r.t. x_j^0
//
// y_0^0 = x_2^0 * x_2^0
// pg_00 = 0, pg_01 = 0, pg_02 = 2 * x_2^0
//
// y_1^0 = x_0^0 * x_1^0
// pg_10 = x_1^0, pg_11 = x_0^0, pg_12 = 0
//
// px_0^0 += py_0^0 * pg_00 + py_1^0 * pg_10
// += py_1^0 * x_1^0
partial_x[0*q1+0] += partial_y[1*q1+0] * taylor_x[1*q1+0];
//
// px_1^0 += py_1^0 * pg_01 + py_1^0 * pg_11
// += py_1^0 * x_0^0
partial_x[1*q1+0] += partial_y[1*q1+0] * taylor_x[0*q1+0];
//
// px_2^0 += py_1^0 * pg_02 + py_1^0 * pg_12
// += py_0^0 * 2.0 * x_2^0
partial_x[2*q1+0] += partial_y[0*q1+0] * 2.0 * taylor_x[2*q1+0];
// --------------------------------------------------------------
return ok;
}
};
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool reverse(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// Create the atomic_reverse object corresponding to g(x)
atomic_reverse afun("atomic_reverse");
//
// Create the function f(u) = g(u) for this example.
//
// domain space vector
size_t n = 3;
double u_0 = 1.00;
double u_1 = 2.00;
double u_2 = 3.00;
vector< AD<double> > au(n);
au[0] = u_0;
au[1] = u_1;
au[2] = u_2;
// declare independent variables and start tape recording
CppAD::Independent(au);
// range space vector
size_t m = 2;
vector< AD<double> > ay(m);
// call atomic function
vector< AD<double> > ax = au;
afun(ax, ay);
// create f: u -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (au, ay); // y = f(u)
//
// check function value
double check = u_2 * u_2;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual( Value(ay[1]) , check, eps, eps);
// --------------------------------------------------------------------
// zero order forward
//
vector<double> u0(n), y0(m);
u0[0] = u_0;
u0[1] = u_1;
u0[2] = u_2;
y0 = f.Forward(0, u0);
check = u_2 * u_2;
ok &= NearEqual(y0[0] , check, eps, eps);
check = u_0 * u_1;
ok &= NearEqual(y0[1] , check, eps, eps);
// --------------------------------------------------------------------
// first order reverse
//
// value of Jacobian of f
double check_jac[] = {
0.0, 0.0, 2.0 * u_2,
u_1, u_0, 0.0
};
vector<double> w(m), dw(n);
//
// check derivative of f_0 (x)
for(size_t i = 0; i < m; i++)
{ w[i] = 1.0;
w[1-i] = 0.0;
dw = f.Reverse(1, w);
for(size_t j = 0; j < n; j++)
{ // compute partial in j-th component direction
ok &= NearEqual(dw[j], check_jac[i * n + j], eps, eps);
}
}
// --------------------------------------------------------------------
// second order reverse
//
// value of Hessian of f_0
double check_hes_0[] = {
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 2.0
};
//
// value of Hessian of f_1
double check_hes_1[] = {
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 0.0
};
vector<double> u1(n), dw2( 2 * n );
for(size_t j = 0; j < n; j++)
{ for(size_t j1 = 0; j1 < n; j1++)
u1[j1] = 0.0;
u1[j] = 1.0;
// first order forward
f.Forward(1, u1);
w[0] = 1.0;
w[1] = 0.0;
dw2 = f.Reverse(2, w);
for(size_t i = 0; i < n; i++)
ok &= NearEqual(dw2[i * 2 + 1], check_hes_0[i * n + j], eps, eps);
w[0] = 0.0;
w[1] = 1.0;
dw2 = f.Reverse(2, w);
for(size_t i = 0; i < n; i++)
ok &= NearEqual(dw2[i * 2 + 1], check_hes_1[i * n + j], eps, eps);
}
// --------------------------------------------------------------------
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_reverse.cpp}
*/
|