1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_three_tangent.cpp}
Tan and Tanh as User Atomic Operations: Example and Test
########################################################
Discussion
**********
The code below uses the :ref:`tan_forward-name` and :ref:`tan_reverse-name`
to implement the tangent and hyperbolic tangent
functions as atomic function operations.
It also uses ``AD<float>`` ,
while most atomic examples use ``AD<double>`` .
Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
using CppAD::vector;
//
class atomic_tangent : public CppAD::atomic_three<float> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
private:
const bool hyperbolic_; // is this hyperbolic tangent
public:
// constructor
atomic_tangent(const char* name, bool hyperbolic)
: CppAD::atomic_three<float>(name),
hyperbolic_(hyperbolic)
{ }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
// calculate type_y
bool for_type(
const vector<float>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
vector<CppAD::ad_type_enum>& type_y ) override
{ assert( parameter_x.size() == type_x.size() );
bool ok = type_x.size() == 1; // n
ok &= type_y.size() == 2; // m
if( ! ok )
return false;
type_y[0] = type_x[0];
type_y[1] = type_x[0];
return true;
}
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
// forward mode routine called by CppAD
bool forward(
const vector<float>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t need_y ,
size_t p ,
size_t q ,
const vector<float>& tx ,
vector<float>& tzy ) override
{ size_t q1 = q + 1;
# ifndef NDEBUG
size_t n = tx.size() / q1;
size_t m = tzy.size() / q1;
# endif
assert( type_x.size() == n );
assert( n == 1 );
assert( m == 2 );
assert( p <= q );
size_t j, k;
if( p == 0 )
{ // z^{(0)} = tan( x^{(0)} ) or tanh( x^{(0)} )
if( hyperbolic_ )
tzy[0] = float( tanh( tx[0] ) );
else
tzy[0] = float( tan( tx[0] ) );
// y^{(0)} = z^{(0)} * z^{(0)}
tzy[q1 + 0] = tzy[0] * tzy[0];
p++;
}
for(j = p; j <= q; j++)
{ float j_inv = 1.f / float(j);
if( hyperbolic_ )
j_inv = - j_inv;
// z^{(j)} = x^{(j)} +- sum_{k=1}^j k x^{(k)} y^{(j-k)} / j
tzy[j] = tx[j];
for(k = 1; k <= j; k++)
tzy[j] += tx[k] * tzy[q1 + j-k] * float(k) * j_inv;
// y^{(j)} = sum_{k=0}^j z^{(k)} z^{(j-k)}
tzy[q1 + j] = 0.;
for(k = 0; k <= j; k++)
tzy[q1 + j] += tzy[k] * tzy[j-k];
}
// All orders are implemented and there are no possible errors
return true;
}
/* {xrst_code}
{xrst_spell_on}
reverse
*******
{xrst_spell_off}
{xrst_code cpp} */
// reverse mode routine called by CppAD
bool reverse(
const vector<float>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
size_t q ,
const vector<float>& tx ,
const vector<float>& tzy ,
vector<float>& px ,
const vector<float>& pzy ) override
{ size_t q1 = q + 1;
# ifndef NDEBUG
size_t n = tx.size() / q1;
size_t m = tzy.size() / q1;
# endif
assert( px.size() == n * q1 );
assert( pzy.size() == m * q1 );
assert( n == 1 );
assert( m == 2 );
size_t j, k;
// copy because partials w.r.t. y and z need to change
vector<float> qzy = pzy;
// initialize accumultion of reverse mode partials
for(k = 0; k < q1; k++)
px[k] = 0.;
// eliminate positive orders
for(j = q; j > 0; j--)
{ float j_inv = 1.f / float(j);
if( hyperbolic_ )
j_inv = - j_inv;
// H_{x^{(k)}} += delta(j-k) +- H_{z^{(j)} y^{(j-k)} * k / j
px[j] += qzy[j];
for(k = 1; k <= j; k++)
px[k] += qzy[j] * tzy[q1 + j-k] * float(k) * j_inv;
// H_{y^{j-k)} += +- H_{z^{(j)} x^{(k)} * k / j
for(k = 1; k <= j; k++)
qzy[q1 + j-k] += qzy[j] * tx[k] * float(k) * j_inv;
// H_{z^{(k)}} += H_{y^{(j-1)}} * z^{(j-k-1)} * 2.
for(k = 0; k < j; k++)
qzy[k] += qzy[q1 + j-1] * tzy[j-k-1] * 2.f;
}
// eliminate order zero
if( hyperbolic_ )
px[0] += qzy[0] * (1.f - tzy[q1 + 0]);
else
px[0] += qzy[0] * (1.f + tzy[q1 + 0]);
return true;
}
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Jacobian sparsity routine called by CppAD
bool jac_sparsity(
const vector<float>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
bool dependency ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
size_t n = select_x.size();
size_t m = select_y.size();
assert( parameter_x.size() == n );
assert( n == 1 );
assert( m == 2 );
// number of non-zeros in sparsity pattern
size_t nnz = 0;
if( select_x[0] )
{ if( select_y[0] )
++nnz;
if( select_y[1] )
++nnz;
}
// sparsity pattern
pattern_out.resize(m, n, nnz);
size_t k = 0;
if( select_x[0] )
{ if( select_y[0] )
pattern_out.set(k++, 0, 0);
if( select_y[1] )
pattern_out.set(k++, 1, 0);
}
assert( k == nnz );
return true;
}
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
// Hessian sparsity routine called by CppAD
bool hes_sparsity(
const vector<float>& parameter_x ,
const vector<CppAD::ad_type_enum>& type_x ,
const vector<bool>& select_x ,
const vector<bool>& select_y ,
CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
{
assert( parameter_x.size() == select_x.size() );
assert( select_y.size() == 2 );
size_t n = select_x.size();
assert( n == 1 );
// number of non-zeros in sparsity pattern
size_t nnz = 0;
if( select_x[0] && (select_y[0] || select_y[1]) )
nnz = 1;
// sparsity pattern
pattern_out.resize(n, n, nnz);
if( select_x[0] && (select_y[0] || select_y[1]) )
pattern_out.set(0, 0, 0);
return true;
}
/* {xrst_code}
{xrst_spell_on}
End Class Definition
********************
{xrst_spell_off}
{xrst_code cpp} */
}; // End of atomic_tangent class
} // End empty namespace
/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool tangent(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
float eps = 10.f * CppAD::numeric_limits<float>::epsilon();
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// --------------------------------------------------------------------
// Creater a tan and tanh object
atomic_tangent my_tan("my_tan", false), my_tanh("my_tanh", true);
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
// domain space vector
size_t n = 1;
float x0 = 0.5;
CppAD::vector< AD<float> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 3;
CppAD::vector< AD<float> > av(m);
// temporary vector for computations
// (my_tan and my_tanh computes tan or tanh and its square)
CppAD::vector< AD<float> > au(2);
// call atomic tan function and store tan(x) in f[0], ignore tan(x)^2
my_tan(ax, au);
av[0] = au[0];
// call atomic tanh function and store tanh(x) in f[1], ignore tanh(x)^2
my_tanh(ax, au);
av[1] = au[0];
// put a constant in f[2] = tanh(1.), for sparsity pattern testing
CppAD::vector< AD<float> > one(1);
one[0] = 1.;
my_tanh(one, au);
av[2] = au[0];
// create f: x -> v and stop tape recording
CppAD::ADFun<float> f;
f.Dependent(ax, av);
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
// check function value
float tan = std::tan(x0);
ok &= NearEqual(av[0] , tan, eps, eps);
float tanh = std::tanh(x0);
ok &= NearEqual(av[1] , tanh, eps, eps);
// check zero order forward
CppAD::vector<float> x(n), v(m);
x[0] = x0;
v = f.Forward(0, x);
ok &= NearEqual(v[0] , tan, eps, eps);
ok &= NearEqual(v[1] , tanh, eps, eps);
// tan'(x) = 1 + tan(x) * tan(x)
// tanh'(x) = 1 - tanh(x) * tanh(x)
float tanp = 1.f + tan * tan;
float tanhp = 1.f - tanh * tanh;
// compute first partial of f w.r.t. x[0] using forward mode
CppAD::vector<float> dx(n), dv(m);
dx[0] = 1.;
dv = f.Forward(1, dx);
ok &= NearEqual(dv[0] , tanp, eps, eps);
ok &= NearEqual(dv[1] , tanhp, eps, eps);
ok &= NearEqual(dv[2] , 0.f, eps, eps);
// tan''(x) = 2 * tan(x) * tan'(x)
// tanh''(x) = - 2 * tanh(x) * tanh'(x)
// Note that second order Taylor coefficient for u half the
// corresponding second derivative.
float two = 2;
float tanpp = two * tan * tanp;
float tanhpp = - two * tanh * tanhp;
// compute second partial of f w.r.t. x[0] using forward mode
CppAD::vector<float> ddx(n), ddv(m);
ddx[0] = 0.;
ddv = f.Forward(2, ddx);
ok &= NearEqual(two * ddv[0], tanpp, eps, eps);
ok &= NearEqual(two * ddv[1], tanhpp, eps, eps);
ok &= NearEqual(two * ddv[2], 0.f, eps, eps);
/* {xrst_code}
{xrst_spell_on}
reverse
=======
{xrst_spell_off}
{xrst_code cpp} */
// compute derivative of tan - tanh using reverse mode
CppAD::vector<float> w(m), dw(n);
w[0] = 1.;
w[1] = 1.;
w[2] = 0.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], w[0]*tanp + w[1]*tanhp, eps, eps);
// compute second derivative of tan - tanh using reverse mode
CppAD::vector<float> ddw(2);
ddw = f.Reverse(2, w);
ok &= NearEqual(ddw[0], w[0]*tanp + w[1]*tanhp , eps, eps);
ok &= NearEqual(ddw[1], w[0]*tanpp + w[1]*tanhpp, eps, eps);
/* {xrst_code}
{xrst_spell_on}
for_jac_sparsity
================
{xrst_spell_off}
{xrst_code cpp} */
// forward mode Jacobian sparstiy pattern
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
pattern_in.resize(1, 1, 1);
pattern_in.set(0, 0, 0);
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
// (0, 0) and (1, 0) are in sparsity pattern
ok &= pattern_out.nnz() == 2;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
ok &= pattern_out.row()[1] == 1;
ok &= pattern_out.col()[1] == 0;
/* {xrst_code}
{xrst_spell_on}
rev_sparse_hes
==============
{xrst_spell_off}
{xrst_code cpp} */
// Hesian sparsity (using previous for_jac_sparsity call)
CPPAD_TESTVECTOR(bool) select_y(m);
select_y[0] = true;
select_y[1] = false;
select_y[2] = false;
f.rev_hes_sparsity(
select_y, transpose, internal_bool, pattern_out
);
ok &= pattern_out.nnz() == 1;
ok &= pattern_out.row()[0] == 0;
ok &= pattern_out.col()[0] == 0;
/* {xrst_code}
{xrst_spell_on}
Large x Values
==============
{xrst_spell_off}
{xrst_code cpp} */
// check tanh results for a large value of x
x[0] = std::numeric_limits<float>::max() / two;
v = f.Forward(0, x);
tanh = 1.;
ok &= NearEqual(v[1], tanh, eps, eps);
dv = f.Forward(1, dx);
tanhp = 0.;
ok &= NearEqual(dv[1], tanhp, eps, eps);
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_three_tangent.cpp}
*/
|