File: tangent.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (452 lines) | stat: -rw-r--r-- 12,786 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin atomic_three_tangent.cpp}

Tan and Tanh as User Atomic Operations: Example and Test
########################################################

Discussion
**********
The code below uses the :ref:`tan_forward-name` and :ref:`tan_reverse-name`
to implement the tangent and hyperbolic tangent
functions as atomic function operations.
It also uses ``AD<float>`` ,
while most atomic examples use ``AD<double>`` .

Start Class Definition
**********************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
using CppAD::vector;
//
class atomic_tangent : public CppAD::atomic_three<float> {
/* {xrst_code}
{xrst_spell_on}
Constructor
***********
{xrst_spell_off}
{xrst_code cpp} */
private:
   const bool hyperbolic_; // is this hyperbolic tangent
public:
   // constructor
   atomic_tangent(const char* name, bool hyperbolic)
   : CppAD::atomic_three<float>(name),
   hyperbolic_(hyperbolic)
   { }
private:
/* {xrst_code}
{xrst_spell_on}
for_type
********
{xrst_spell_off}
{xrst_code cpp} */
   // calculate type_y
   bool for_type(
      const vector<float>&                parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<CppAD::ad_type_enum>&        type_y      ) override
   {  assert( parameter_x.size() == type_x.size() );
      bool ok = type_x.size() == 1; // n
      ok     &= type_y.size() == 2; // m
      if( ! ok )
         return false;
      type_y[0] = type_x[0];
      type_y[1] = type_x[0];
      return true;
   }
/* {xrst_code}
{xrst_spell_on}
forward
*******
{xrst_spell_off}
{xrst_code cpp} */
   // forward mode routine called by CppAD
   bool forward(
      const vector<float>&               parameter_x ,
      const vector<CppAD::ad_type_enum>& type_x      ,
      size_t                             need_y      ,
      size_t                             p           ,
      size_t                             q           ,
      const vector<float>&               tx          ,
      vector<float>&                     tzy         ) override
   {  size_t q1 = q + 1;
# ifndef NDEBUG
      size_t n  = tx.size()  / q1;
      size_t m  = tzy.size() / q1;
# endif
      assert( type_x.size() == n );
      assert( n == 1 );
      assert( m == 2 );
      assert( p <= q );
      size_t j, k;

      if( p == 0 )
      {  // z^{(0)} = tan( x^{(0)} ) or tanh( x^{(0)} )
         if( hyperbolic_ )
            tzy[0] = float( tanh( tx[0] ) );
         else
            tzy[0] = float( tan( tx[0] ) );

         // y^{(0)} = z^{(0)} * z^{(0)}
         tzy[q1 + 0] = tzy[0] * tzy[0];

         p++;
      }
      for(j = p; j <= q; j++)
      {  float j_inv = 1.f / float(j);
         if( hyperbolic_ )
            j_inv = - j_inv;

         // z^{(j)} = x^{(j)} +- sum_{k=1}^j k x^{(k)} y^{(j-k)} / j
         tzy[j] = tx[j];
         for(k = 1; k <= j; k++)
            tzy[j] += tx[k] * tzy[q1 + j-k] * float(k) * j_inv;

         // y^{(j)} = sum_{k=0}^j z^{(k)} z^{(j-k)}
         tzy[q1 + j] = 0.;
         for(k = 0; k <= j; k++)
            tzy[q1 + j] += tzy[k] * tzy[j-k];
      }

      // All orders are implemented and there are no possible errors
      return true;
   }
/* {xrst_code}
{xrst_spell_on}
reverse
*******
{xrst_spell_off}
{xrst_code cpp} */
   // reverse mode routine called by CppAD
   bool reverse(
      const vector<float>&               parameter_x ,
      const vector<CppAD::ad_type_enum>& type_x      ,
      size_t                             q           ,
      const vector<float>&               tx          ,
      const vector<float>&               tzy         ,
      vector<float>&                     px          ,
      const vector<float>&               pzy         ) override
   {  size_t q1 = q + 1;
# ifndef NDEBUG
      size_t n  = tx.size()  / q1;
      size_t m  = tzy.size() / q1;
# endif
      assert( px.size()  == n * q1 );
      assert( pzy.size() == m * q1 );
      assert( n == 1 );
      assert( m == 2 );

      size_t j, k;

      // copy because partials w.r.t. y and z need to change
      vector<float> qzy = pzy;

      // initialize accumultion of reverse mode partials
      for(k = 0; k < q1; k++)
         px[k] = 0.;

      // eliminate positive orders
      for(j = q; j > 0; j--)
      {  float j_inv = 1.f / float(j);
         if( hyperbolic_ )
            j_inv = - j_inv;

         // H_{x^{(k)}} += delta(j-k) +- H_{z^{(j)} y^{(j-k)} * k / j
         px[j] += qzy[j];
         for(k = 1; k <= j; k++)
            px[k] += qzy[j] * tzy[q1 + j-k] * float(k) * j_inv;

         // H_{y^{j-k)} += +- H_{z^{(j)} x^{(k)} * k / j
         for(k = 1; k <= j; k++)
            qzy[q1 + j-k] += qzy[j] * tx[k] * float(k) * j_inv;

         // H_{z^{(k)}} += H_{y^{(j-1)}} * z^{(j-k-1)} * 2.
         for(k = 0; k < j; k++)
            qzy[k] += qzy[q1 + j-1] * tzy[j-k-1] * 2.f;
      }

      // eliminate order zero
      if( hyperbolic_ )
         px[0] += qzy[0] * (1.f - tzy[q1 + 0]);
      else
         px[0] += qzy[0] * (1.f + tzy[q1 + 0]);

      return true;
   }
/* {xrst_code}
{xrst_spell_on}
jac_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
   // Jacobian sparsity routine called by CppAD
   bool jac_sparsity(
      const vector<float>&                parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      bool                                dependency  ,
      const vector<bool>&                 select_x    ,
      const vector<bool>&                 select_y    ,
      CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
   {
      size_t n = select_x.size();
      size_t m = select_y.size();
      assert( parameter_x.size() == n );
      assert( n == 1 );
      assert( m == 2 );

      // number of non-zeros in sparsity pattern
      size_t nnz = 0;
      if( select_x[0] )
      {  if( select_y[0] )
            ++nnz;
         if( select_y[1] )
            ++nnz;
      }

      // sparsity pattern
      pattern_out.resize(m, n, nnz);
      size_t k = 0;
      if( select_x[0] )
      {  if( select_y[0] )
            pattern_out.set(k++, 0, 0);
         if( select_y[1] )
            pattern_out.set(k++, 1, 0);
      }
      assert( k == nnz );

      return true;
   }
/* {xrst_code}
{xrst_spell_on}
hes_sparsity
************
{xrst_spell_off}
{xrst_code cpp} */
   // Hessian sparsity routine called by CppAD
   bool hes_sparsity(
      const vector<float>&                parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      const vector<bool>&                 select_x    ,
      const vector<bool>&                 select_y    ,
      CppAD::sparse_rc< vector<size_t> >& pattern_out ) override
   {
      assert( parameter_x.size() == select_x.size() );
      assert( select_y.size() == 2 );
      size_t n = select_x.size();
      assert( n == 1 );

      // number of non-zeros in sparsity pattern
      size_t nnz = 0;
      if( select_x[0] && (select_y[0] || select_y[1]) )
         nnz = 1;
      // sparsity pattern
      pattern_out.resize(n, n, nnz);
      if( select_x[0] && (select_y[0] || select_y[1]) )
         pattern_out.set(0, 0, 0);

      return true;
   }
/* {xrst_code}
{xrst_spell_on}
End Class Definition
********************
{xrst_spell_off}
{xrst_code cpp} */
}; // End of atomic_tangent class
}  // End empty namespace

/* {xrst_code}
{xrst_spell_on}
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
bool tangent(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   float eps = 10.f * CppAD::numeric_limits<float>::epsilon();
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
   // --------------------------------------------------------------------
   // Creater a tan and tanh object
   atomic_tangent my_tan("my_tan", false), my_tanh("my_tanh", true);
/* {xrst_code}
{xrst_spell_on}
Recording
=========
{xrst_spell_off}
{xrst_code cpp} */
   // domain space vector
   size_t n  = 1;
   float  x0 = 0.5;
   CppAD::vector< AD<float> > ax(n);
   ax[0]     = x0;

   // declare independent variables and start tape recording
   CppAD::Independent(ax);

   // range space vector
   size_t m = 3;
   CppAD::vector< AD<float> > av(m);

   // temporary vector for computations
   // (my_tan and my_tanh computes tan or tanh and its square)
   CppAD::vector< AD<float> > au(2);

   // call atomic tan function and store tan(x) in f[0], ignore tan(x)^2
   my_tan(ax, au);
   av[0] = au[0];

   // call atomic tanh function and store tanh(x) in f[1], ignore tanh(x)^2
   my_tanh(ax, au);
   av[1] = au[0];

   // put a constant in f[2] = tanh(1.),  for sparsity pattern testing
   CppAD::vector< AD<float> > one(1);
   one[0] = 1.;
   my_tanh(one, au);
   av[2] = au[0];

   // create f: x -> v and stop tape recording
   CppAD::ADFun<float> f;
   f.Dependent(ax, av);
/* {xrst_code}
{xrst_spell_on}
forward
=======
{xrst_spell_off}
{xrst_code cpp} */
   // check function value
   float tan = std::tan(x0);
   ok &= NearEqual(av[0] , tan,  eps, eps);
   float tanh = std::tanh(x0);
   ok &= NearEqual(av[1] , tanh,  eps, eps);

   // check zero order forward
   CppAD::vector<float> x(n), v(m);
   x[0] = x0;
   v    = f.Forward(0, x);
   ok &= NearEqual(v[0] , tan,  eps, eps);
   ok &= NearEqual(v[1] , tanh,  eps, eps);

   // tan'(x)   = 1 + tan(x)  * tan(x)
   // tanh'(x)  = 1 - tanh(x) * tanh(x)
   float tanp  = 1.f + tan * tan;
   float tanhp = 1.f - tanh * tanh;

   // compute first partial of f w.r.t. x[0] using forward mode
   CppAD::vector<float> dx(n), dv(m);
   dx[0] = 1.;
   dv    = f.Forward(1, dx);
   ok   &= NearEqual(dv[0] , tanp,   eps, eps);
   ok   &= NearEqual(dv[1] , tanhp,  eps, eps);
   ok   &= NearEqual(dv[2] , 0.f,    eps, eps);

   // tan''(x)   = 2 *  tan(x) * tan'(x)
   // tanh''(x)  = - 2 * tanh(x) * tanh'(x)
   // Note that second order Taylor coefficient for u half the
   // corresponding second derivative.
   float two    = 2;
   float tanpp  =   two * tan * tanp;
   float tanhpp = - two * tanh * tanhp;

   // compute second partial of f w.r.t. x[0] using forward mode
   CppAD::vector<float> ddx(n), ddv(m);
   ddx[0] = 0.;
   ddv    = f.Forward(2, ddx);
   ok   &= NearEqual(two * ddv[0], tanpp, eps, eps);
   ok   &= NearEqual(two * ddv[1], tanhpp, eps, eps);
   ok   &= NearEqual(two * ddv[2], 0.f, eps, eps);

/* {xrst_code}
{xrst_spell_on}
reverse
=======
{xrst_spell_off}
{xrst_code cpp} */
   // compute derivative of tan - tanh using reverse mode
   CppAD::vector<float> w(m), dw(n);
   w[0]  = 1.;
   w[1]  = 1.;
   w[2]  = 0.;
   dw    = f.Reverse(1, w);
   ok   &= NearEqual(dw[0], w[0]*tanp + w[1]*tanhp, eps, eps);

   // compute second derivative of tan - tanh using reverse mode
   CppAD::vector<float> ddw(2);
   ddw   = f.Reverse(2, w);
   ok   &= NearEqual(ddw[0], w[0]*tanp  + w[1]*tanhp , eps, eps);
   ok   &= NearEqual(ddw[1], w[0]*tanpp + w[1]*tanhpp, eps, eps);
/* {xrst_code}
{xrst_spell_on}
for_jac_sparsity
================
{xrst_spell_off}
{xrst_code cpp} */
   // forward mode Jacobian sparstiy pattern
   CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
   pattern_in.resize(1, 1, 1);
   pattern_in.set(0, 0, 0);
   bool transpose     = false;
   bool dependency    = false;
   bool internal_bool = false;
   f.for_jac_sparsity(
      pattern_in, transpose, dependency, internal_bool, pattern_out
   );
   // (0, 0) and (1, 0) are in sparsity pattern
   ok &= pattern_out.nnz() == 2;
   ok &= pattern_out.row()[0] == 0;
   ok &= pattern_out.col()[0] == 0;
   ok &= pattern_out.row()[1] == 1;
   ok &= pattern_out.col()[1] == 0;
/* {xrst_code}
{xrst_spell_on}
rev_sparse_hes
==============
{xrst_spell_off}
{xrst_code cpp} */
   // Hesian sparsity (using previous for_jac_sparsity call)
   CPPAD_TESTVECTOR(bool) select_y(m);
   select_y[0] = true;
   select_y[1] = false;
   select_y[2] = false;
   f.rev_hes_sparsity(
      select_y, transpose, internal_bool, pattern_out
   );
   ok &= pattern_out.nnz() == 1;
   ok &= pattern_out.row()[0] == 0;
   ok &= pattern_out.col()[0] == 0;
/* {xrst_code}
{xrst_spell_on}
Large x Values
==============
{xrst_spell_off}
{xrst_code cpp} */
   // check tanh results for a large value of x
   x[0]  = std::numeric_limits<float>::max() / two;
   v     = f.Forward(0, x);
   tanh  = 1.;
   ok   &= NearEqual(v[1], tanh, eps, eps);
   dv    = f.Forward(1, dx);
   tanhp = 0.;
   ok   &= NearEqual(dv[1], tanhp, eps, eps);

   return ok;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end atomic_three_tangent.cpp}
*/