1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin chkpoint_two_base2ad.cpp}
Checkpointing With base2ad: Example and Test
############################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end chkpoint_two_base2ad.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
typedef CPPAD_TESTVECTOR(size_t) size_vector;
// f(y) = ( 3*y[0], 3*y[1] )
void f_algo(const ADVector& y, ADVector& z)
{ z[0] = 0.0;
z[1] = 0.0;
for(size_t k = 0; k < 3; k++)
{ z[0] += y[0];
z[1] += y[1];
}
return;
}
// g(x) = ( x[0]^3, x[1]^3 )
void g_algo(const ADVector& x, ADVector& y)
{ y[0] = 1.0;
y[1] = 1.0;
for(size_t k = 0; k < 3; k++)
{ y[0] *= x[0];
y[1] *= x[1];
}
return;
}
}
bool base2ad(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// AD vectors holding x, y, and z values
size_t nx = 2, ny = 2, nz = 2;
ADVector ax(nx), ay(ny), az(nz);
// record the function g_fun(x)
for(size_t j = 0; j < nx; j++)
ax[j] = double(j + 1);
Independent(ax);
g_algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
// record the function f_fun(y)
Independent(ay);
f_algo(ay, az);
CppAD::ADFun<double> f_fun(ay, az);
// create checkpoint versions of f and g
bool internal_bool = true;
bool use_hes_sparsity = true;
bool use_base2ad = true;
bool use_in_parallel = false;
CppAD::chkpoint_two<double> f_chk(f_fun, "f_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
CppAD::chkpoint_two<double> g_chk(g_fun, "g_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
// Record a version of z = f[g(x)] = h(x) with checkpointing
// h(x) = [ 3*x[0]^3 , 3*x[1]^3 ]
Independent(ax);
g_chk(ax, ay);
f_chk(ay, az);
CppAD::ADFun<double> h_fun(ax, az);
// Use base2ad to create and AD<double> version of h
CppAD::ADFun< AD<double>, double> ah_fun = h_fun.base2ad();
// start recording AD<Base> operations
Independent(ax);
// record evaluate derivative of h_0 (x)
az = ah_fun.Forward(0, ax);
ADVector aw(nz), adw(nx);
aw[0] = 1.0;
for(size_t i = 1; i < nz; ++i)
aw[i] = 0.0;
adw = ah_fun.Reverse(1, aw);
// k(x) = h_0 '(x) = [ 9*x[0]^2 , 0.0 ]
CppAD::ADFun<double> k_fun(ax, adw);
// Evaluate the Jacobian of k(x)
CPPAD_TESTVECTOR(double) x(nx);
for(size_t j = 0; j < nx; ++j)
x[j] = 2.0 + double(nx - j);
CPPAD_TESTVECTOR(double) J = k_fun.Jacobian(x);
// check result
for(size_t i = 0; i < nz; ++i)
{ for(size_t j = 0; j < nx; ++j)
{ double Jij = J[i * nx + j];
if( i == 0 && j == 0 )
{ double check = 18.0 * x[0];
ok &= CppAD::NearEqual(Jij, check, eps99, eps99);
}
else
ok &= Jij == 0.0;
}
}
return ok;
}
// END C++
|