1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin chkpoint_two_compare.cpp}
Compare With and Without Checkpointing: Example and Test
########################################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end chkpoint_two_compare.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
typedef CPPAD_TESTVECTOR(size_t) size_vector;
void f_algo(const ADVector& y, ADVector& z)
{ z[0] = 0.0;
z[1] = 0.0;
for(size_t k = 0; k < 3; k++)
{ z[0] += y[0];
z[1] += y[1];
}
return;
}
void g_algo(const ADVector& x, ADVector& y)
{ y[0] = 1.0;
y[1] = 1.0;
for(size_t k = 0; k < 3; k++)
{ y[0] *= x[0];
y[1] *= x[1];
}
return;
}
bool equal(
const CppAD::sparse_rc<size_vector>& pattern_left ,
const CppAD::sparse_rc<size_vector>& pattern_right )
{
size_vector row_major_left = pattern_left.row_major();
size_vector row_major_right = pattern_right.row_major();
bool ok = pattern_left.nnz() == pattern_right.nnz();
if( ! ok )
return ok;
for(size_t k = 0; k < pattern_left.nnz(); ++k)
{ size_t r_left = pattern_left.row()[ row_major_left[k] ];
size_t c_left = pattern_left.col()[ row_major_left[k] ];
size_t r_right = pattern_right.row()[ row_major_right[k] ];
size_t c_right = pattern_right.col()[ row_major_right[k] ];
ok &= (r_left == r_right) && (c_left == c_right);
}
return ok;
}
}
bool compare(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// AD vectors holding x, y, and z values
size_t nx = 2, ny = 2, nz = 2;
ADVector ax(nx), ay(ny), az(nz);
// record the function g_fun(x)
for(size_t j = 0; j < nx; j++)
ax[j] = double(j + 1);
Independent(ax);
g_algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
// record the function f_fun(y)
Independent(ay);
f_algo(ay, az);
CppAD::ADFun<double> f_fun(ay, az);
// create checkpoint versions of f and g
bool internal_bool = true;
bool use_hes_sparsity = true;
bool use_base2ad = false;
bool use_in_parallel = false;
CppAD::chkpoint_two<double> f_chk(f_fun, "f_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
CppAD::chkpoint_two<double> g_chk(g_fun, "g_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
// Record a version of z = f[g(x)] without checkpointing
Independent(ax);
g_algo(ax, ay);
f_algo(ay, az);
CppAD::ADFun<double> check_not(ax, az);
// Record a version of z = f[g(x)] with checkpointing
Independent(ax);
g_chk(ax, ay);
f_chk(ay, az);
CppAD::ADFun<double> check_yes(ax, az);
// checkpointing should use fewer operations
ok &= check_not.size_var() > check_yes.size_var();
// this does not really save space because f and g are only used once
ok &= check_not.size_var() <= check_yes.size_var()
+ f_fun.size_var() + g_fun.size_var();
// compare forward mode results for orders 0, 1, 2
size_t q1 = 3; // order_up + 1
CPPAD_TESTVECTOR(double) x_q(nx*q1), z_not(nz*q1), z_yes(nz*q1);
for(size_t j = 0; j < nx; j++)
{ for(size_t k = 0; k < q1; k++)
x_q[ j * q1 + k ] = 1.0 / double(q1 - k);
}
z_not = check_not.Forward(q1-1, x_q);
z_yes = check_yes.Forward(q1-1, x_q);
for(size_t i = 0; i < nz; i++)
{ for(size_t k = 0; k < q1; k++)
{ double zik_not = z_not[ i * q1 + k];
double zik_yes = z_yes[ i * q1 + k];
ok &= NearEqual(zik_not, zik_yes, eps99, eps99);
}
}
// compare reverse mode results for orders 0, 1, 2
CPPAD_TESTVECTOR(double) w(nz*q1), dw_not(nx*q1), dw_yes(nx*q1);
for(size_t i = 0; i < nz * q1; i++)
w[i] = 1.0 / double(i + 1);
dw_not = check_not.Reverse(q1, w);
dw_yes = check_yes.Reverse(q1, w);
for(size_t j = 0; j < nx; j++)
{ for(size_t k = 0; k < q1; k++)
{ double dwjk_not = dw_not[ j * q1 + k];
double dwjk_yes = dw_yes[ j * q1 + k];
ok &= NearEqual(dwjk_not, dwjk_yes, eps99, eps99);
}
}
// compare Jacobian sparsity patterns
CppAD::sparse_rc<size_vector> pattern_in, pattern_not, pattern_yes;
pattern_in.resize(nx, nx, nx);
for(size_t k = 0; k < nx; ++k)
pattern_in.set(k, k, k);
bool transpose = false;
bool dependency = false;
internal_bool = false;
// for_jac_sparsity (not internal_bool is false)
check_not.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_not
);
pattern_in.resize(nz, nz, nz);
for(size_t k = 0; k < nz; ++k)
pattern_in.set(k, k, k);
// forward and reverse Jacobian sparsity should give same answer
check_yes.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_yes
);
ok &= equal(pattern_not, pattern_yes );
// compare Hessian sparsity patterns
CPPAD_TESTVECTOR(bool) select_x(nx), select_z(nz);
for(size_t j = 0; j < nx; ++j)
select_x[j] = true;
for(size_t i = 0; i < nz; ++i)
select_z[i] = true;
transpose = false;
// Reverse should give same results as forward because
// previous for_jac_sparsity used identity for pattern_in.
// Note that internal_bool must be same as in call to for_sparse_jac.
check_not.rev_hes_sparsity(
select_z, transpose, internal_bool, pattern_yes
);
// internal_bool need not be the same during a call to for_hes_sparsity
internal_bool = ! internal_bool;
check_yes.for_hes_sparsity(
select_x, select_z, internal_bool, pattern_not
);
ok &= equal(pattern_not, pattern_yes);
//
return ok;
}
// END C++
|