1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin chkpoint_two_get_started.cpp}
Get Started Checkpointing: Example and Test
###########################################
Purpose
*******
Break a large computation into pieces and only store values at the
interface of the pieces.
In actual applications, there may many uses of each function
and many more functions.
f
*
The function :math:`f : \B{R}^2 \rightarrow \B{R}^2`
is defined by
.. math::
f(y) = \left( \begin{array}{c}
y_0 + y_0 + y_0
\\
y_1 + y_1 + y_1
\end{array} \right)
g
*
The function :math:`g : \B{R}^2 \rightarrow \B{R}^2`
defined by
.. math::
g(x) = \left( \begin{array}{c}
x_0 \cdot x_0 \cdot x_0
\\
x_1 \cdot x_1 \cdot x_1
\end{array} \right)
f[g(x)]
*******
The function :math:`f[g(x)]` is given by
.. math::
f[g(x)]
=
f \left[ \begin{array}{c}
x_0^3 \\
x_1^3
\end{array} \right]
=
\left[ \begin{array}{c}
3 x_0^3 \\
3 x_1^3
\end{array} \right]
Source Code
***********
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end chkpoint_two_get_started.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
void f_algo(const ADVector& y, ADVector& z)
{ z[0] = 0.0;
z[1] = 0.0;
for(size_t k = 0; k < 3; k++)
{ z[0] += y[0];
z[1] += y[1];
}
return;
}
void g_algo(const ADVector& x, ADVector& y)
{ y[0] = 1.0;
y[1] = 1.0;
for(size_t k = 0; k < 3; k++)
{ y[0] *= x[0];
y[1] *= x[1];
}
return;
}
}
bool get_started(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// AD vectors holding x, y, and z values
size_t nx = 2, ny = 2, nz = 2;
ADVector ax(nx), ay(ny), az(nz);
// record the function g_fun(x)
for(size_t j = 0; j < nx; j++)
ax[j] = double(j + 1);
Independent(ax);
g_algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
// record the function f_fun(y)
Independent(ay);
f_algo(ay, az);
CppAD::ADFun<double> f_fun(ay, az);
// create checkpoint versions of f and g
bool internal_bool = false;
bool use_hes_sparsity = false;
bool use_base2ad = false;
bool use_in_parallel = false;
CppAD::chkpoint_two<double> f_chk( f_fun, "f_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
CppAD::chkpoint_two<double> g_chk( g_fun, "g_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
// Record a version of z = f[g(x)] using checkpointing
Independent(ax);
g_chk(ax, ay);
f_chk(ay, az);
CppAD::ADFun<double> fg(ax, az);
// zero order forward mode
CPPAD_TESTVECTOR(double) x(nx), z(nz);
for(size_t j = 0; j < nx; j++)
x[j] = 1.0 / double(1 + j);
z = fg.Forward(0, x);
for(size_t i = 0; i < nz; i++)
{ double check = 3.0 * x[i] * x[i] * x[i];
ok &= NearEqual(z[i], check, eps99, eps99);
}
// optimize fg and check that results do not change
fg.optimize();
for(size_t i = 0; i < nz; i++)
{ double check = 3.0 * x[i] * x[i] * x[i];
ok &= NearEqual(z[i], check, eps99, eps99);
}
//
return ok;
}
// END C++
|