File: jacobian.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (73 lines) | stat: -rw-r--r-- 1,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin code_gen_fun_jacobian.cpp}

Evaluate Jacobian of a Code Gen Function: Example and Test
##########################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end code_gen_fun_jacobian.cpp}
*/
// BEGIN C++
# include <cppad/example/code_gen_fun.hpp>

bool jacobian(void)
{  bool ok = true;
   //
   typedef CppAD::cg::CG<double>     c_double;
   typedef CppAD::AD<c_double>      ac_double;
   //
   typedef CppAD::vector<double>     d_vector;
   typedef CppAD::vector<ac_double> ac_vector;
   //
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // domain space vector
   size_t n  = 2;
   ac_vector ac_x(n);
   for(size_t j = 0; j < n; ++j)
      ac_x[j] = 1.0 / double(j + 1);

   // declare independent variables and start tape recording
   CppAD::Independent(ac_x);

   // range space vector
   size_t m = 3;
   ac_vector ac_y(m);
   for(size_t i = 0; i < m; ++i)
      ac_y[i] = double(i + 1) * sin( ac_x[i % n] );

   // create c_f: x -> y and stop tape recording
   CppAD::ADFun<c_double> c_f(ac_x, ac_y);

   // create compiled version of c_f
   std::string file_name = "example_lib";
   code_gen_fun::evaluation_enum eval_jac = code_gen_fun::dense_enum;
   code_gen_fun f(file_name, c_f, eval_jac);

   // evaluate the compiled jacobian
   d_vector x(n), J;
   for(size_t j = 0; j < n; ++j)
      x[j] = 1.0 / double(j + 2);
   J = f.jacobian(x);

   // check Jaociban values
   for(size_t i = 0; i < m; ++i)
   {  for(size_t j = 0; j < n; ++j)
      {  double check = 0.0;
         if( j == i % n )
            check = double(i + 1) * cos( x[i % n] );
         ok &= CppAD::NearEqual(J[i * n + j] , check, eps99, eps99);
      }
   }
   return ok;
}
// END C++