1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin base2ad.cpp}
{xrst_spell
cccc
}
Taylor's Ode Solver: base2ad Example and Test
#############################################
See Also
********
:ref:`taylor_ode.cpp-name` , :ref:`mul_level_ode.cpp-name`
Purpose
*******
This is a realistic example using :ref:`base2ad-name` to create
an ``AD`` < *Base* > function from an *Base* function.
The function represents an ordinary differential equation.
It is differentiated with respect to
its :ref:`variables<glossary@Variable>` .
These derivatives are used by the :ref:`taylor_ode-name` method.
This solution is then differentiated with respect to
the functions :ref:`dynamic parameters<glossary@Parameter@Dynamic>` .
ODE
***
For this example the function
:math:`y : \B{R} \times \B{R}^n \rightarrow \B{R}^n` is defined by
:math:`y(0, x) = 0` and
:math:`\partial_t y(t, x) = g(y, x)` where
:math:`g : \B{R}^n \times \B{R}^n \rightarrow \B{R}^n` is defined by
.. math::
g(y, x) =
\left( \begin{array}{c}
x_0 \\
x_1 y_0 \\
\vdots \\
x_{n-1} y_{n-2}
\end{array} \right)
ODE Solution
************
The solution for this example can be calculated by
starting with the first row and then using the solution
for the first row to solve the second and so on.
Doing this we obtain
.. math::
y(t, x ) =
\left( \begin{array}{c}
x_0 t \\
x_1 x_0 t^2 / 2 \\
\vdots \\
x_{n-1} x_{n-2} \ldots x_0 t^n / n !
\end{array} \right)
Derivative of ODE Solution
**************************
Differentiating the solution above,
with respect to the parameter vector :math:`x`,
we notice that
.. math::
\partial_x y(t, x ) =
\left( \begin{array}{cccc}
y_0 (t,x) / x_0 & 0 & \cdots & 0 \\
y_1 (t,x) / x_0 & y_1 (t,x) / x_1 & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
y_{n-1} (t,x) / x_0 & y_{n-1} (t,x) / x_1 & \cdots & y_{n-1} (t,x) / x_{n-1}
\end{array} \right)
Taylor's Method Using AD
************************
We define the function :math:`z(t, x)` by the equation
.. math::
z ( t , x ) = g[ y ( t , x ), x ]
see :ref:`taylor_ode-name` for the method used to compute the
Taylor coefficients w.r.t :math:`t` of :math:`y(t, x)`.
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end base2ad.cpp}
--------------------------------------------------------------------------
*/
// BEGIN C++
# include <cppad/cppad.hpp>
// =========================================================================
namespace { // BEGIN empty namespace
typedef CppAD::AD<double> a_double;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR(a_double) a_vector;
typedef CppAD::ADFun<double> fun_double;
typedef CppAD::ADFun<a_double, double> afun_double;
// -------------------------------------------------------------------------
// class definition for C++ function object that defines ODE
class Ode {
private:
// copy of x that is set by constructor and used by g(y)
a_vector x_;
public:
// constructor
Ode(const a_vector& x) : x_(x)
{ }
// the function g(y) given the parameter vector x
a_vector operator() (const a_vector& y) const
{ size_t n = y.size();
a_vector g(n);
g[0] = x_[0];
for(size_t i = 1; i < n; i++)
g[i] = x_[i] * y[i-1];
//
return g;
}
};
// -------------------------------------------------------------------------
// Routine that uses Taylor's method to solve ordinary differential equaitons
a_vector taylor_ode(
afun_double& fun_g , // function that defines the ODE
size_t order , // order of Taylor's method used
size_t nstep , // number of steps to take
const a_double& dt , // Delta t for each step
const a_vector& y_ini) // y(t) at the initial time
{
// number of variables in the ODE
size_t n = y_ini.size();
// initialize y
a_vector y = y_ini;
// loop with respect to each step of Taylors method
for(size_t s = 0; s < nstep; s++)
{
// initialize
a_vector y_k = y;
a_double dt_k = a_double(1.0);
a_vector next = y;
for(size_t k = 0; k < order; k++)
{
// evaluate k-th order Taylor coefficient z^{(k)} (t)
a_vector z_k = fun_g.Forward(k, y_k);
// dt^{k+1}
dt_k *= dt;
// y^{(k+1)}
for(size_t i = 0; i < n; i++)
{ // y^{(k+1)}
y_k[i] = z_k[i] / a_double(k + 1);
// add term for k+1 Taylor coefficient
// to solution for next y
next[i] += y_k[i] * dt_k;
}
}
// take step
y = next;
}
return y;
}
} // END empty namespace
// ==========================================================================
// Routine that tests alogirhtmic differentiation of solutions computed
// by the routine taylor_ode.
bool base2ad(void)
{ bool ok = true;
double eps = 100. * std::numeric_limits<double>::epsilon();
// number of components in differential equation
size_t n = 4;
// record function g(y, x)
// with y as the independent variables and x as dynamic parameters
a_vector ay(n), ax(n);
for(size_t i = 0; i < n; i++)
ay[i] = ax[i] = double(i + 1);
CppAD::Independent(ay, ax);
// fun_g
Ode G(ax);
a_vector ag = G(ay);
fun_double fun_g(ay, ag);
// afun_g
afun_double afun_g( fun_g.base2ad() ); // differential equation
// other arguments to taylor_ode
size_t order = n; // order of Taylor's method used
size_t nstep = 2; // number of steps to take
a_double adt = 1.; // Delta t for each step
a_vector ay_ini(n); // initial value of y
for(size_t i = 0; i < n; i++)
ay_ini[i] = 0.;
// declare x as independent variables
CppAD::Independent(ax);
// the independent variables if this function are
// the dynamic parameters in afun_g
afun_g.new_dynamic(ax);
// integrate the differential equation
a_vector ay_final;
ay_final = taylor_ode(afun_g, order, nstep, adt, ay_ini);
// define differentiable function object f(x) = y_final(x)
// that computes its derivatives in double
CppAD::ADFun<double> fun_f(ax, ay_final);
// double version of ax
d_vector x(n);
for(size_t i = 0; i < n; i++)
x[i] = Value( ax[i] );
// check function values
double check = 1.;
double t = double(nstep) * Value(adt);
for(size_t i = 0; i < n; i++)
{ check *= x[i] * t / double(i + 1);
ok &= CppAD::NearEqual(Value(ay_final[i]), check, eps, eps);
}
// There appears to be a bug in g++ version 4.4.2 because it generates
// a warning for the equivalent form
// d_vector jac = fun_f.Jacobian(x);
d_vector jac ( fun_f.Jacobian(x) );
// check Jacobian
for(size_t i = 0; i < n; i++)
{ for(size_t j = 0; j < n; j++)
{ double jac_ij = jac[i * n + j];
if( i < j )
check = 0.;
else
check = Value( ay_final[i] ) / x[j];
ok &= CppAD::NearEqual(jac_ij, check, eps, eps);
}
}
return ok;
}
// END C++
|