1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin bender_quad.cpp app}
{xrst_spell
argmin
}
BenderQuad: Example and Test
############################
Define
:math:`F : \B{R} \times \B{R} \rightarrow \B{R}` by
.. math::
F(x, y)
=
\frac{1}{2} \sum_{i=1}^N [ y * \sin ( x * t_i ) - z_i ]^2
where :math:`z \in \B{R}^N` is a fixed vector.
It follows that
.. math::
:nowrap:
\begin{eqnarray}
\partial_y F(x, y)
& = &
\sum_{i=1}^N [ y * \sin ( x * t_i ) - z_i ] \sin( x * t_i )
\\
\partial_y \partial_y F(x, y)
& = &
\sum_{i=1}^N \sin ( x t_i )^2
\end{eqnarray}
Furthermore if we define :math:`Y(x)`
as the argmin of :math:`F(x, y)` with respect to :math:`y`,
.. math::
:nowrap:
\begin{eqnarray}
Y(x)
& = &
y - [ \partial_y \partial_y F(x, y) ]^{-1} \partial_y F[x, y]
\\
& = &
\left.
\sum_{i=1}^N z_i \sin ( x t_i )
\right/
\sum_{i=1}^N z_i \sin ( x * t_i )^2
\end{eqnarray}
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end bender_quad.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(double) BAvector;
typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
class Fun {
private:
BAvector t_; // measurement times
BAvector z_; // measurement values
public:
// constructor
Fun(const BAvector &t, const BAvector &z)
: t_(t), z_(z)
{ }
// Fun.f(x, y) = F(x, y)
ADvector f(const ADvector &x, const ADvector &y)
{ size_t i;
size_t N = size_t(z_.size());
ADvector F(1);
F[0] = 0.;
AD<double> residual;
for(i = 0; i < N; i++)
{ residual = y[0] * sin( x[0] * t_[i] ) - z_[i];
F[0] += .5 * residual * residual;
}
return F;
}
// Fun.h(x, y) = H(x, y) = F_y (x, y)
ADvector h(const ADvector &x, const BAvector &y)
{ size_t i;
size_t N = size_t(z_.size());
ADvector fy(1);
fy[0] = 0.;
AD<double> residual;
for(i = 0; i < N; i++)
{ residual = y[0] * sin( x[0] * t_[i] ) - z_[i];
fy[0] += residual * sin( x[0] * t_[i] );
}
return fy;
}
// Fun.dy(x, y, h) = - H_y (x,y)^{-1} * h
// = - F_yy (x, y)^{-1} * h
ADvector dy(
const BAvector &x ,
const BAvector &y ,
const ADvector &H )
{ size_t i;
size_t N = size_t(z_.size());
ADvector Dy(1);
AD<double> fyy = 0.;
for(i = 0; i < N; i++)
{ fyy += sin( x[0] * t_[i] ) * sin( x[0] * t_[i] );
}
Dy[0] = - H[0] / fyy;
return Dy;
}
};
// Used to test calculation of Hessian of G
AD<double> G(const ADvector& x, const BAvector& t, const BAvector& z)
{ // compute Y(x)
AD<double> numerator = 0.;
AD<double> denominator = 0.;
size_t k;
for(k = 0; k < size_t(t.size()); k++)
{ numerator += sin( x[0] * t[k] ) * z[k];
denominator += sin( x[0] * t[k] ) * sin( x[0] * t[k] );
}
AD<double> y = numerator / denominator;
// V(x) = F[x, Y(x)]
AD<double> sum = 0;
for(k = 0; k < size_t(t.size()); k++)
{ AD<double> residual = y * sin( x[0] * t[k] ) - z[k];
sum += .5 * residual * residual;
}
return sum;
}
}
bool BenderQuad(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// temporary indices
size_t i, j;
// x space vector
size_t n = 1;
BAvector x(n);
x[0] = 2. * 3.141592653;
// y space vector
size_t m = 1;
BAvector y(m);
y[0] = 1.;
// t and z vectors
size_t N = 10;
BAvector t(N);
BAvector z(N);
for(i = 0; i < N; i++)
{ t[i] = double(i) / double(N); // time of measurement
z[i] = y[0] * sin( x[0] * t[i] ); // data without noise
}
// construct the function object
Fun fun(t, z);
// evaluate the G(x), G'(x) and G''(x)
BAvector g(1), gx(n), gxx(n * n);
CppAD::BenderQuad(x, y, fun, g, gx, gxx);
// create ADFun object Gfun corresponding to G(x)
ADvector a_x(n), a_g(1);
for(j = 0; j < n; j++)
a_x[j] = x[j];
Independent(a_x);
a_g[0] = G(a_x, t, z);
CppAD::ADFun<double> Gfun(a_x, a_g);
// accuracy for checks
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// check Jacobian
BAvector check_gx = Gfun.Jacobian(x);
for(j = 0; j < n; j++)
ok &= NearEqual(gx[j], check_gx[j], eps, eps);
// check Hessian
BAvector check_gxx = Gfun.Hessian(x, 0);
for(j = 0; j < n*n; j++)
ok &= NearEqual(gxx[j], check_gxx[j], eps, eps);
return ok;
}
// END C++
|