1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin complex_poly.cpp}
Complex Polynomial: Example and Test
####################################
Poly
****
Select this link to view specifications for :ref:`Poly-name` :
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end complex_poly.cpp}
*/
// BEGIN C++
// Complex examples should supppress conversion warnings
# include <cppad/wno_conversion.hpp>
# include <cppad/cppad.hpp>
# include <complex>
bool complex_poly(void)
{ bool ok = true;
size_t deg = 4;
using CppAD::AD;
using CppAD::Poly;
typedef std::complex<double> Complex;
// polynomial coefficients
CPPAD_TESTVECTOR( Complex ) a (deg + 1); // coefficients for p(z)
CPPAD_TESTVECTOR(AD<Complex>) A (deg + 1);
size_t i;
for(i = 0; i <= deg; i++)
A[i] = a[i] = Complex(double(i), double(i));
// independent variable vector
CPPAD_TESTVECTOR(AD<Complex>) Z(1);
Complex z = Complex(1., 2.);
Z[0] = z;
Independent(Z);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<Complex>) P(1);
// dependent variable values
P[0] = Poly(0, A, Z[0]);
// create f: Z -> P and vectors used for derivative calculations
CppAD::ADFun<Complex> f(Z, P);
CPPAD_TESTVECTOR(Complex) v( f.Domain() );
CPPAD_TESTVECTOR(Complex) w( f.Range() );
// check first derivative w.r.t z
v[0] = 1.;
w = f.Forward(1, v);
Complex p = Poly(1, a, z);
ok &= ( w[0] == p );
// second derivative w.r.t z is 2 times its second order Taylor coeff
v[0] = 0.;
w = f.Forward(2, v);
p = Poly(2, a, z);
ok &= ( 2. * w[0] == p );
return ok;
}
// END C++
|