File: eigen_det.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (97 lines) | stat: -rw-r--r-- 2,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin eigen_det.cpp}

Using Eigen To Compute Determinant: Example and Test
####################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end eigen_det.cpp}
*/
// BEGIN C++
# include <cppad/example/cppad_eigen.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <Eigen/Dense>

bool eigen_det(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   using Eigen::Matrix;
   using Eigen::Dynamic;
   using Eigen::Index;
   //
   typedef Matrix< double     , Dynamic, Dynamic > matrix;
   typedef Matrix< AD<double> , Dynamic, Dynamic > a_matrix;
   //
   typedef CppAD::eigen_vector<double>          vector;
   typedef CppAD::eigen_vector< AD<double> >    a_vector;
   //

   // domain and range space vectors
   size_t size = 3, n  = size * size, m = 1;
   a_vector a_x(n), a_y(m);
   vector x(n);

   // set and declare independent variables and start tape recording
   for(size_t i = 0; i < size; i++)
   {  for(size_t j = 0; j < size; j++)
      {  // lower triangular matrix
         a_x[i * size + j] = x[i * size + j] = 0.0;
         if( j <= i )
            a_x[i * size + j] = x[i * size + j] = double(1 + i + j);
      }
   }
   CppAD::Independent(a_x);

   // copy independent variable vector to a matrix
   Index Size = Index(size);
   a_matrix a_X(Size, Size);
   matrix     X(Size, Size);
   for(size_t i = 0; i < size; i++)
   {  for(size_t j = 0; j < size; j++)
      {  Index I = Index(i);
         Index J = Index(j);
         X(I ,J)   = x[i * size + j];
         // If we used a_X(i, j) = X(i, j), a_X would not depend on a_x.
         a_X(I, J) = a_x[i * size + j];
      }
   }

   // Compute the log of determinant of X
   a_y[0] = log( a_X.determinant() );

   // create f: x -> y and stop tape recording
   CppAD::ADFun<double> f(a_x, a_y);

   // check function value
   double eps = 100. * CppAD::numeric_limits<double>::epsilon();
   CppAD::det_by_minor<double> det(size);
   ok &= NearEqual(Value(a_y[0]) , log(det(x)), eps, eps);

   // compute the derivative of y w.r.t x using CppAD
   vector jac = f.Jacobian(x);

   // check the derivative using the formula
   // d/dX log(det(X)) = transpose( inv(X) )
   matrix inv_X = X.inverse();
   for(size_t i = 0; i < size; i++)
   {  for(size_t j = 0; j < size; j++)
      {  Index I = Index(i);
         Index J = Index(j);
         ok &= NearEqual(jac[i * size + j], inv_X(J, I), eps, eps);
      }
   }

   return ok;
}

// END C++