1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin for_two.cpp}
Subset of Second Order Partials: Example and Test
#################################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end for_two.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // -----------------------------------------------------
// define the template function in empty namespace
// bool ForTwoCases<BaseVector, SizeVector_t>(void)
template <class BaseVector, class SizeVector_t>
bool ForTwoCases()
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
using CppAD::exp;
using CppAD::sin;
using CppAD::cos;
// domain space vector
size_t n = 2;
CPPAD_TESTVECTOR(AD<double>) X(n);
X[0] = 1.;
X[1] = 2.;
// declare independent variables and starting recording
CppAD::Independent(X);
// a calculation between the domain and range values
AD<double> Square = X[0] * X[0];
// range space vector
size_t m = 3;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = Square * exp( X[1] );
Y[1] = Square * sin( X[1] );
Y[2] = Square * cos( X[1] );
// create f: X -> Y and stop tape recording
CppAD::ADFun<double> f(X, Y);
// new value for the independent variable vector
BaseVector x(n);
x[0] = 2.;
x[1] = 1.;
// set j and k to compute specific second partials of y
size_t p = 2;
SizeVector_t j(p);
SizeVector_t k(p);
j[0] = 0; k[0] = 0; // for second partial w.r.t. x[0] and x[0]
j[1] = 0; k[1] = 1; // for second partial w.r.t x[0] and x[1]
// compute the second partials
BaseVector ddy(m * p);
ddy = f.ForTwo(x, j, k);
/*
partial of y w.r.t x[0] is
[ 2 * x[0] * exp(x[1]) ]
[ 2 * x[0] * sin(x[1]) ]
[ 2 * x[0] * cos(x[1]) ]
*/
// second partial of y w.r.t x[0] and x[1]
ok &= NearEqual( 2.*exp(x[1]), ddy[0*p+0], eps99, eps99);
ok &= NearEqual( 2.*sin(x[1]), ddy[1*p+0], eps99, eps99);
ok &= NearEqual( 2.*cos(x[1]), ddy[2*p+0], eps99, eps99);
// second partial of F w.r.t x[0] and x[1]
ok &= NearEqual( 2.*x[0]*exp(x[1]), ddy[0*p+1], eps99, eps99);
ok &= NearEqual( 2.*x[0]*cos(x[1]), ddy[1*p+1], eps99, eps99);
ok &= NearEqual(-2.*x[0]*sin(x[1]), ddy[2*p+1], eps99, eps99);
return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool ForTwo(void)
{ bool ok = true;
// Run with BaseVector equal to three different cases
// all of which are Simple Vectors with elements of type double.
ok &= ForTwoCases< CppAD::vector <double>, std::vector<size_t> >();
ok &= ForTwoCases< std::vector <double>, std::vector<size_t> >();
ok &= ForTwoCases< std::valarray <double>, std::vector<size_t> >();
// Run with SizeVector_t equal to two other cases
// which are Simple Vectors with elements of type size_t.
ok &= ForTwoCases< std::vector <double>, CppAD::vector<size_t> >();
ok &= ForTwoCases< std::vector <double>, std::valarray<size_t> >();
return ok;
}
// END C++
|