File: hes_lagrangian.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (230 lines) | stat: -rw-r--r-- 6,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin hes_lagrangian.cpp}

{xrst_comment ! NOTE the title states that this example is used two places !}
Hessian of Lagrangian and ADFun Default Constructor: Example and Test
#####################################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end hes_lagrangian.cpp}
*/
// BEGIN C++

# include <cppad/cppad.hpp>
# include <cassert>

namespace {
   CppAD::AD<double> Lagragian(
      const CppAD::vector< CppAD::AD<double> > &xyz )
   {  using CppAD::AD;
      assert( xyz.size() == 6 );

      AD<double> x0 = xyz[0];
      AD<double> x1 = xyz[1];
      AD<double> x2 = xyz[2];
      AD<double> y0 = xyz[3];
      AD<double> y1 = xyz[4];
      AD<double> z  = xyz[5];

      // compute objective function
      AD<double> f = x0 * x0;
      // compute constraint functions
      AD<double> g0 = 1. + 2.*x1 + 3.*x2;
      AD<double> g1 = log( x0 * x2 );
      // compute the Lagragian
      AD<double> L = y0 * g0 + y1 * g1 + z * f;

      return L;

   }
   CppAD::vector< CppAD::AD<double> > fg(
      const CppAD::vector< CppAD::AD<double> > &x )
   {  using CppAD::AD;
      using CppAD::vector;
      assert( x.size() == 3 );

      vector< AD<double> > fg(3);
      fg[0] = x[0] * x[0];
      fg[1] = 1. + 2. * x[1] + 3. * x[2];
      fg[2] = log( x[0] * x[2] );

      return fg;
   }
   bool CheckHessian(
   CppAD::vector<double> H ,
   double x0, double x1, double x2, double y0, double y1, double z )
   {  using CppAD::NearEqual;
      double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
      bool ok  = true;
      size_t n = 3;
      assert( H.size() == n * n );
      /*
      L   =    z*x0*x0 + y0*(1 + 2*x1 + 3*x2) + y1*log(x0*x2)

      L_0 = 2 * z * x0 + y1 / x0
      L_1 = y0 * 2
      L_2 = y0 * 3 + y1 / x2
      */
      // L_00 = 2 * z - y1 / ( x0 * x0 )
      double check = 2. * z - y1 / (x0 * x0);
      ok &= NearEqual(H[0 * n + 0], check, eps99, eps99);
      // L_01 = L_10 = 0
      ok &= NearEqual(H[0 * n + 1], 0., eps99, eps99);
      ok &= NearEqual(H[1 * n + 0], 0., eps99, eps99);
      // L_02 = L_20 = 0
      ok &= NearEqual(H[0 * n + 2], 0., eps99, eps99);
      ok &= NearEqual(H[2 * n + 0], 0., eps99, eps99);
      // L_11 = 0
      ok &= NearEqual(H[1 * n + 1], 0., eps99, eps99);
      // L_12 = L_21 = 0
      ok &= NearEqual(H[1 * n + 2], 0., eps99, eps99);
      ok &= NearEqual(H[2 * n + 1], 0., eps99, eps99);
      // L_22 = - y1 / (x2 * x2)
      check = - y1 / (x2 * x2);
      ok &= NearEqual(H[2 * n + 2], check, eps99, eps99);

      return ok;
   }
   bool UseL()
   {  using CppAD::AD;
      using CppAD::vector;

      // double values corresponding to x, y, and z vectors
      double x0(.5), x1(1e3), x2(1), y0(2.), y1(3.), z(4.);

      // domain space vector
      size_t n = 3;
      vector< AD<double> >  a_x(n);
      a_x[0] = x0;
      a_x[1] = x1;
      a_x[2] = x2;

      // declare a_x as independent variable vector and start recording
      CppAD::Independent(a_x);

      // vector including x, y, and z
      vector< AD<double> > a_xyz(n + 2 + 1);
      a_xyz[0] = a_x[0];
      a_xyz[1] = a_x[1];
      a_xyz[2] = a_x[2];
      a_xyz[3] = y0;
      a_xyz[4] = y1;
      a_xyz[5] = z;

      // range space vector
      size_t m = 1;
      vector< AD<double> >  a_L(m);
      a_L[0] = Lagragian(a_xyz);

      // create K: x -> L and stop tape recording.
      // Use default ADFun construction for example purposes.
      CppAD::ADFun<double> K;
      K.Dependent(a_x, a_L);

      // Operation sequence corresponding to K depends on
      // value of y0, y1, and z. Must redo calculations above when
      // y0, y1, or z changes.

      // declare independent variable vector and Hessian
      vector<double> x(n);
      vector<double> H( n * n );

      // point at which we are computing the Hessian
      // (must redo calculations below each time x changes)
      x[0] = x0;
      x[1] = x1;
      x[2] = x2;
      H = K.Hessian(x, 0);

      // check this Hessian calculation
      return CheckHessian(H, x0, x1, x2, y0, y1, z);
   }
   bool Usefg()
   {  using CppAD::AD;
      using CppAD::vector;

      // parameters defining problem
      double x0(.5), x1(1e3), x2(1), y0(2.), y1(3.), z(4.);

      // domain space vector
      size_t n = 3;
      vector< AD<double> >  a_x(n);
      a_x[0] = x0;
      a_x[1] = x1;
      a_x[2] = x2;

      // declare a_x as independent variable vector and start recording
      CppAD::Independent(a_x);

      // range space vector
      size_t m = 3;
      vector< AD<double> >  a_fg(m);
      a_fg = fg(a_x);

      // create K: x -> fg and stop tape recording
      CppAD::ADFun<double> K;
      K.Dependent(a_x, a_fg);

      // Operation sequence corresponding to K does not depend on
      // value of x0, x1, x2, y0, y1, or z.

      // forward and reverse mode arguments and results
      vector<double> x(n);
      vector<double> H( n * n );
      vector<double>  dx(n);
      vector<double>   w(m);
      vector<double>  dw(2*n);

      // compute Hessian at this value of x
      // (must redo calculations below each time x changes)
      x[0] = x0;
      x[1] = x1;
      x[2] = x2;
      K.Forward(0, x);

      // set weights to Lagrange multiplier values
      // (must redo calculations below each time y0, y1, or z changes)
      w[0] = z;
      w[1] = y0;
      w[2] = y1;

      // initialize dx as zero
      size_t i, j;
      for(i = 0; i < n; i++)
         dx[i] = 0.;
      // loop over components of x
      for(i = 0; i < n; i++)
      {  dx[i] = 1.;             // dx is i-th elementary vector
         K.Forward(1, dx);       // partial w.r.t dx
         dw = K.Reverse(2, w);   // deritavtive of partial
         for(j = 0; j < n; j++)
            H[ i * n + j ] = dw[ j * 2 + 1 ];
         dx[i] = 0.;             // dx is zero vector
      }

      // check this Hessian calculation
      return CheckHessian(H, x0, x1, x2, y0, y1, z);
   }
}

bool HesLagrangian(void)
{  bool ok = true;

   // UseL is simpler, but must retape every time that y of z changes
   ok     &= UseL();

   // Usefg does not need to retape unless operation sequence changes
   ok     &= Usefg();
   return ok;
}

// END C++