1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
WARNING: This file is used an an example by fun_construct.
{xrst_begin independent.cpp}
{xrst_comment ! NOTE the title states that this example is used two places !}
Independent and ADFun Constructor: Example and Test
###################################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end independent.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // --------------------------------------------------------
// define the template function Test<ADVector>(void) in empty namespace
template <class ADVector>
bool Test(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 2;
ADVector X(n); // ADVector is the template parameter in call to Test
X[0] = 0.;
X[1] = 1.;
// declare independent variables and start recording
// use the template parameter ADVector for the vector type
CppAD::Independent(X);
AD<double> a = X[0] + X[1]; // first AD operation
AD<double> b = X[0] * X[1]; // second AD operation
// range space vector
size_t m = 2;
ADVector Y(m); // ADVector is the template paraemter in call to Test
Y[0] = a;
Y[1] = b;
// create f: X -> Y and stop tape recording
// use the template parameter ADVector for the vector type
CppAD::ADFun<double> f(X, Y);
// check value
ok &= NearEqual(Y[0] , 1., eps99 , eps99);
ok &= NearEqual(Y[1] , 0., eps99 , eps99);
// compute f(1, 2)
CPPAD_TESTVECTOR(double) x(n);
CPPAD_TESTVECTOR(double) y(m);
x[0] = 1.;
x[1] = 2.;
y = f.Forward(0, x);
ok &= NearEqual(y[0] , 3., eps99 , eps99);
ok &= NearEqual(y[1] , 2., eps99 , eps99);
// compute partial of f w.r.t x[0] at (1, 2)
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dx[1] = 0.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0] , 1., eps99 , eps99);
ok &= NearEqual(dy[1] , x[1], eps99 , eps99);
// compute partial of f w.r.t x[1] at (1, 2)
dx[0] = 0.;
dx[1] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0] , 1., eps99 , eps99);
ok &= NearEqual(dy[1] , x[0], eps99 , eps99);
return ok;
}
} // End of empty namespace -------------------------------------------
# include <vector>
# include <valarray>
bool Independent(void)
{ bool ok = true;
typedef CppAD::AD<double> ADdouble;
// Run with ADVector equal to three different cases
// all of which are Simple Vectors with elements of type AD<double>.
ok &= Test< CppAD::vector <ADdouble> >();
ok &= Test< std::vector <ADdouble> >();
ok &= Test< std::valarray <ADdouble> >();
return ok;
}
// END C++
|