1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin lu_ratio.cpp app}
LuRatio: Example and Test
#########################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end lu_ratio.cpp}
*/
// BEGIN C++
# include <cstdlib> // for rand function
# include <cassert>
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
CppAD::ADFun<double> *NewFactor(
size_t n ,
const CPPAD_TESTVECTOR(double) &x ,
bool &ok ,
CPPAD_TESTVECTOR(size_t) &ip ,
CPPAD_TESTVECTOR(size_t) &jp )
{ using CppAD::AD;
using CppAD::ADFun;
size_t i, j, k;
// values for independent and dependent variables
CPPAD_TESTVECTOR(AD<double>) Y(n*n+1), X(n*n);
// values for the LU factor
CPPAD_TESTVECTOR(AD<double>) LU(n*n);
// record the LU factorization corresponding to this value of x
AD<double> Ratio;
for(k = 0; k < n*n; k++)
X[k] = x[k];
Independent(X);
for(k = 0; k < n*n; k++)
LU[k] = X[k];
CppAD::LuRatio(ip, jp, LU, Ratio);
for(k = 0; k < n*n; k++)
Y[k] = LU[k];
Y[n*n] = Ratio;
// use a function pointer so can return ADFun object
ADFun<double> *FunPtr = new ADFun<double>(X, Y);
// check value of ratio during recording
ok &= (Ratio == 1.);
// check that ip and jp are permutations of the indices 0, ... , n-1
for(i = 0; i < n; i++)
{ ok &= (ip[i] < n);
ok &= (jp[i] < n);
for(j = 0; j < n; j++)
{ if( i != j )
{ ok &= (ip[i] != ip[j]);
ok &= (jp[i] != jp[j]);
}
}
}
return FunPtr;
}
bool CheckLuFactor(
size_t n ,
const CPPAD_TESTVECTOR(double) &x ,
const CPPAD_TESTVECTOR(double) &y ,
const CPPAD_TESTVECTOR(size_t) &ip ,
const CPPAD_TESTVECTOR(size_t) &jp )
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
double sum; // element of L * U
double pij; // element of permuted x
size_t i, j, k; // temporary indices
// L and U factors
CPPAD_TESTVECTOR(double) L(n*n), U(n*n);
// Extract L from LU factorization
for(i = 0; i < n; i++)
{ // elements along and below the diagonal
for(j = 0; j <= i; j++)
L[i * n + j] = y[ ip[i] * n + jp[j] ];
// elements above the diagonal
for(j = i+1; j < n; j++)
L[i * n + j] = 0.;
}
// Extract U from LU factorization
for(i = 0; i < n; i++)
{ // elements below the diagonal
for(j = 0; j < i; j++)
U[i * n + j] = 0.;
// elements along the diagonal
U[i * n + i] = 1.;
// elements above the diagonal
for(j = i+1; j < n; j++)
U[i * n + j] = y[ ip[i] * n + jp[j] ];
}
// Compute L * U
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
{ // compute element (i,j) entry in L * U
sum = 0.;
for(k = 0; k < n; k++)
sum += L[i * n + k] * U[k * n + j];
// element (i,j) in permuted version of A
pij = x[ ip[i] * n + jp[j] ];
// compare
ok &= NearEqual(pij, sum, eps99, eps99);
}
}
return ok;
}
} // end Empty namespace
bool LuRatio(void)
{ bool ok = true;
size_t n = 2; // number rows in A
double ratio;
// values for independent and dependent variables
CPPAD_TESTVECTOR(double) x(n*n), y(n*n+1);
// pivot vectors
CPPAD_TESTVECTOR(size_t) ip(n), jp(n);
// set x equal to the identity matrix
x[0] = 1.; x[1] = 0;
x[2] = 0.; x[3] = 1.;
// create a fnction object corresponding to this value of x
CppAD::ADFun<double> *FunPtr = NewFactor(n, x, ok, ip, jp);
// use function object to factor matrix
y = FunPtr->Forward(0, x);
ratio = y[n*n];
ok &= (ratio == 1.);
ok &= CheckLuFactor(n, x, y, ip, jp);
// set x so that the pivot ratio will be infinite
x[0] = 0. ; x[1] = 1.;
x[2] = 1. ; x[3] = 0.;
// try to use old function pointer to factor matrix
y = FunPtr->Forward(0, x);
ratio = y[n*n];
// check to see if we need to refactor matrix
ok &= (ratio > 10.);
if( ratio > 10. )
{ delete FunPtr; // to avoid a memory leak
FunPtr = NewFactor(n, x, ok, ip, jp);
}
// now we can use the function object to factor matrix
y = FunPtr->Forward(0, x);
ratio = y[n*n];
ok &= (ratio == 1.);
ok &= CheckLuFactor(n, x, y, ip, jp);
delete FunPtr; // avoid memory leak
return ok;
}
// END C++
|