1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin lu_vec_ad.cpp}
{xrst_spell
logdet
rhs
signdet
}
Lu Factor and Solve with Recorded Pivoting
##########################################
Syntax
******
| ``int lu_vec_ad`` (
| |tab| ``size_t`` *n* ,
| |tab| ``size_t`` *m* ,
| |tab| ``VecAD`` < *double* > & *Matrix* ,
| |tab| ``VecAD`` < *double* > & *Rhs* ,
| |tab| ``VecAD`` < *double* > & *Result* ,
| |tab| *AD* < ``double`` > & ``logdet`` )
Purpose
*******
Solves the linear equation
.. math::
Matrix * Result = Rhs
where *Matrix* is an :math:`n \times n` matrix,
*Rhs* is an :math:`n x m` matrix, and
*Result* is an :math:`n x m` matrix.
The routine :ref:`LuSolve-name` uses an arbitrary vector type,
instead of :ref:`VecAD-name` ,
to hold its elements.
The pivoting operations for a ``ADFun`` object
corresponding to an ``lu_vec_ad`` solution
will change to be optimal for the matrix being factored.
It is often the case that
``LuSolve`` is faster than ``lu_vec_ad`` when ``LuSolve``
uses a simple vector class with
:ref:`elements of type double<SimpleVector@Elements of Specified Type>` ,
but the corresponding :ref:`ADFun-name` objects have a fixed
set of pivoting operations.
Storage Convention
******************
The matrices stored in row major order.
To be specific, if :math:`A` contains the vector storage for an
:math:`n x m` matrix,
:math:`i` is between zero and :math:`n-1`,
and :math:`j` is between zero and :math:`m-1`,
.. math::
A_{i,j} = A[ i * m + j ]
(The length of :math:`A` must be equal to :math:`n * m`.)
n
*
is the number of rows in
*Matrix* ,
*Rhs* ,
and *Result* .
m
*
is the number of columns in
*Rhs*
and *Result* .
It is ok for *m* to be zero which is reasonable when
you are only interested in the determinant of *Matrix* .
Matrix
******
On input, this is an
:math:`n \times n` matrix containing the variable coefficients for
the equation we wish to solve.
On output, the elements of *Matrix* have been overwritten
and are not specified.
Rhs
***
On input, this is an
:math:`n \times m` matrix containing the right hand side
for the equation we wish to solve.
On output, the elements of *Rhs* have been overwritten
and are not specified.
If *m* is zero, *Rhs* is not used.
Result
******
On input, this is an
:math:`n \times m` matrix and the value of its elements do not matter.
On output, the elements of *Rhs* contain the solution
of the equation we wish to solve
(unless the value returned by ``lu_vec_ad`` is equal to zero).
If *m* is zero, *Result* is not used.
logdet
******
On input, the value of *logdet* does not matter.
On output, it has been set to the
log of the determinant of *Matrix* (but not quite).
To be more specific,
if *signdet* is the value returned by ``lu_vec_ad`` ,
the determinant of *Matrix* is given by the formula
.. math::
det = signdet \exp( logdet )
This enables ``lu_vec_ad`` to use logs of absolute values.
Example
*******
{xrst_toc_hidden
example/general/lu_vec_ad_ok.cpp
}
The file
:ref:`lu_vec_ad_ok.cpp-name`
contains an example and test of ``lu_vec_ad`` .
{xrst_end lu_vec_ad.cpp}
------------------------------------------------------------------------------
*/
# include "lu_vec_ad.hpp"
# include <cppad/cppad.hpp>
// BEGIN CppAD namespace
namespace CppAD {
AD<double> lu_vec_ad(
size_t n,
size_t m,
CppAD::VecAD<double> &Matrix,
CppAD::VecAD<double> &Rhs,
CppAD::VecAD<double> &Result,
CppAD::AD<double> &logdet)
{
using namespace CppAD;
typedef AD<double> Type;
// temporary index
Type index;
Type jndex;
// index and maximum element value
Type imax;
Type jmax;
Type itmp;
Type jtmp;
Type emax;
// some temporary indices
Type i;
Type j;
Type k;
// count pivots
Type p;
// sign of the determinant
Type signdet;
// temporary values
Type etmp;
Type diff;
// pivot element
Type pivot;
// singular matrix
Type singular = 0.;
// some constants
Type M(m);
Type N(n);
Type One(1);
Type Zero(0);
// pivot row and column order in the matrix
VecAD<double> ip(n);
VecAD<double> jp(n);
// -------------------------------------------------------
// initialize row and column order in matrix not yet pivoted
for(i = 0; i < N; i += 1.)
{ ip[i] = i;
jp[i] = i;
}
// initialize the log determinant
logdet = 0.;
signdet = 1;
for(p = 0; p < N; p += 1.)
{
// determine row and column corresponding to element of
// maximum absolute value in remaining part of Matrix
imax = N;
jmax = N;
emax = 0.;
for(i = p; i < N; i += 1.)
{ itmp = ip[i] * N;
for(j = p; j < N; j += 1.)
{ assert(
(ip[i] < N) && (jp[j] < N)
);
index = itmp + jp[j];
etmp = Matrix[ index ];
// compute absolute value of element
etmp = fabs(etmp);
// update maximum absolute value so far
emax = CondExpGe(etmp, emax, etmp, emax);
imax = CondExpGe(etmp, emax, i, imax);
jmax = CondExpGe(etmp, emax, j, jmax);
}
}
assert( (imax < N) && (jmax < N) );
// switch rows so max absolute element is in row p
index = ip[p];
ip[p] = ip[imax];
ip[imax] = index;
// if imax != p, switch sign of determinant
signdet = CondExpEq(imax, p, signdet, -signdet);
// switch columns so max absolute element is in column p
jndex = jp[p];
jp[p] = jp[jmax];
jp[jmax] = jndex;
// if imax != p, switch sign of determinant
signdet = CondExpEq(jmax, p, signdet, -signdet);
// pivot using the max absolute element
itmp = ip[p] * N;
index = itmp + jp[p];
pivot = Matrix[ index ];
// update the singular matrix flag
singular = CondExpEq(pivot, Zero, One, singular);
// update the log of absolute determinant and its sign
etmp = fabs(pivot);
logdet = logdet + log( etmp );
signdet = CondExpGe(pivot, Zero, signdet, - signdet);
/*
Reduce by the elementary transformations that maps
Matrix( ip[p], jp[p] ) to one and Matrix( ip[i], jp[p] )
to zero for i = p + 1., ... , n-1
*/
// divide row number ip[p] by pivot element
for(j = p + 1.; j < N; j += 1.)
{
index = itmp + jp[j];
Matrix[ index ] = Matrix[ index ] / pivot;
}
// not used anymore so no need to set to 1
// Matrix[ ip[p] * N + jp[p] ] = Type(1);
// divide corresponding row of right hand side by pivot element
itmp = ip[p] * M;
for(k = 0; k < M; k += 1.)
{
index = itmp + k;
Rhs[ index ] = Rhs[ index ] / pivot;
}
for(i = p + 1.; i < N; i += 1. )
{ itmp = ip[i] * N;
jtmp = ip[p] * N;
index = itmp + jp[p];
etmp = Matrix[ index ];
for(j = p + 1.; j < N; j += 1.)
{ index = itmp + jp[j];
jndex = jtmp + jp[j];
Matrix[ index ] = Matrix[ index ]
- etmp * Matrix[ jndex ];
}
itmp = ip[i] * M;
jtmp = ip[p] * M;
for(k = 0; k < M; k += 1.)
{
index = itmp + k;
jndex = jtmp + k;
Rhs[ index ] = Rhs[ index ]
- etmp * Rhs[ jndex ];
}
// not used any more so no need to set to zero
// Matrix[ ip[i] * N + jp[p] ] = 0.;
}
}
// loop over equations
for(k = 0; k < M; k += 1.)
{ // loop over variables
p = N;
while( p > 0. )
{ p -= 1.;
index = ip[p] * M + k;
jndex = jp[p] * M + k;
etmp = Rhs[ index ];
Result[ jndex ] = etmp;
for(i = 0; i < p; i += 1. )
{
index = ip[i] * M + k;
jndex = ip[i] * N + jp[p];
Rhs[ index ] = Rhs[ index ]
- etmp * Matrix[ jndex ];
}
}
}
// make sure return zero in the singular case
return (1. - singular) * signdet;
}
} // END CppAD namespace
|