1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin mul_level_ode.cpp}
{xrst_spell
cccc
}
Taylor's Ode Solver: A Multi-Level AD Example and Test
######################################################
See Also
********
:ref:`taylor_ode.cpp-name` , :ref:`base2ad.cpp-name` , :ref:`mul_level_adolc_ode.cpp-name`
Purpose
*******
This is a realistic example using
two levels of AD; see :ref:`mul_level-name` .
The first level uses ``AD<double>`` to tape the solution of an
ordinary differential equation.
This solution is then differentiated with respect to a parameter vector.
The second level uses ``AD< AD<double> >``
to take derivatives during the solution of the differential equation.
These derivatives are used in the application
of Taylor's method to the solution of the ODE.
ODE
***
For this example the function
:math:`y : \B{R} \times \B{R}^n \rightarrow \B{R}^n` is defined by
:math:`y(0, x) = 0` and
:math:`\partial_t y(t, x) = g(y, x)` where
:math:`g : \B{R}^n \times \B{R}^n \rightarrow \B{R}^n` is defined by
.. math::
g(y, x) =
\left( \begin{array}{c}
x_0 \\
x_1 y_0 \\
\vdots \\
x_{n-1} y_{n-2}
\end{array} \right)
ODE Solution
************
The solution for this example can be calculated by
starting with the first row and then using the solution
for the first row to solve the second and so on.
Doing this we obtain
.. math::
y(t, x ) =
\left( \begin{array}{c}
x_0 t \\
x_1 x_0 t^2 / 2 \\
\vdots \\
x_{n-1} x_{n-2} \ldots x_0 t^n / n !
\end{array} \right)
Derivative of ODE Solution
**************************
Differentiating the solution above,
with respect to the parameter vector :math:`x`,
we notice that
.. math::
\partial_x y(t, x ) =
\left( \begin{array}{cccc}
y_0 (t,x) / x_0 & 0 & \cdots & 0 \\
y_1 (t,x) / x_0 & y_1 (t,x) / x_1 & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
y_{n-1} (t,x) / x_0 & y_{n-1} (t,x) / x_1 & \cdots & y_{n-1} (t,x) / x_{n-1}
\end{array} \right)
Taylor's Method Using AD
************************
We define the function :math:`z(t, x)` by the equation
.. math::
z ( t , x ) = g[ y ( t , x ) ] = h [ x , y( t , x ) ]
see :ref:`taylor_ode-name` for the method used to compute the
Taylor coefficients w.r.t :math:`t` of :math:`y(t, x)`.
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end mul_level_ode.cpp}
--------------------------------------------------------------------------
*/
// BEGIN C++
# include <cppad/cppad.hpp>
// =========================================================================
// define types for each level
namespace { // BEGIN empty namespace
typedef CppAD::AD<double> a1double;
typedef CppAD::AD<a1double> a2double;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR(a1double) a1vector;
typedef CPPAD_TESTVECTOR(a2double) a2vector;
// -------------------------------------------------------------------------
// class definition for C++ function object that defines ODE
class Ode {
private:
// copy of a that is set by constructor and used by g(y)
a1vector a1x_;
public:
// constructor
Ode(const a1vector& a1x) : a1x_(a1x)
{ }
// the function g(y) is evaluated with two levels of taping
a2vector operator()
( const a2vector& a2y) const
{ size_t n = a2y.size();
a2vector a2g(n);
size_t i;
a2g[0] = a1x_[0];
for(i = 1; i < n; i++)
a2g[i] = a1x_[i] * a2y[i-1];
return a2g;
}
};
// -------------------------------------------------------------------------
// Routine that uses Taylor's method to solve ordinary differential equaitons
// and allows for algorithmic differentiation of the solution.
a1vector taylor_ode(
Ode G , // function that defines the ODE
size_t order , // order of Taylor's method used
size_t nstep , // number of steps to take
const a1double& a1dt , // Delta t for each step
const a1vector& a1y_ini) // y(t) at the initial time
{
// some temporary indices
size_t i, k, ell;
// number of variables in the ODE
size_t n = a1y_ini.size();
// copies of x and g(y) with two levels of taping
a2vector a2y(n), a2z(n);
// y, y^{(k)} , z^{(k)}, and y^{(k+1)}
a1vector a1y(n), a1y_k(n), a1z_k(n), a1y_kp(n);
// initialize x
for(i = 0; i < n; i++)
a1y[i] = a1y_ini[i];
// loop with respect to each step of Taylors method
for(ell = 0; ell < nstep; ell++)
{ // prepare to compute derivatives using a1double
for(i = 0; i < n; i++)
a2y[i] = a1y[i];
CppAD::Independent(a2y);
// evaluate ODE in a2double
a2z = G(a2y);
// define differentiable version of a1g: y -> z
// that computes its derivatives using a1double objects
CppAD::ADFun<a1double> a1g(a2y, a2z);
// Use Taylor's method to take a step
a1y_k = a1y; // initialize y^{(k)}
a1double a1dt_kp = a1dt; // initialize dt^(k+1)
for(k = 0; k <= order; k++)
{ // evaluate k-th order Taylor coefficient of y
a1z_k = a1g.Forward(k, a1y_k);
for(i = 0; i < n; i++)
{ // convert to (k+1)-Taylor coefficient for x
a1y_kp[i] = a1z_k[i] / a1double(k + 1);
// add term for to this Taylor coefficient
// to solution for y(t, x)
a1y[i] += a1y_kp[i] * a1dt_kp;
}
// next power of t
a1dt_kp *= a1dt;
// next Taylor coefficient
a1y_k = a1y_kp;
}
}
return a1y;
}
} // END empty namespace
// ==========================================================================
// Routine that tests alogirhtmic differentiation of solutions computed
// by the routine taylor_ode.
bool mul_level_ode(void)
{ bool ok = true;
double eps = 100. * std::numeric_limits<double>::epsilon();
// number of components in differential equation
size_t n = 4;
// some temporary indices
size_t i, j;
// parameter vector in both double and a1double
d_vector x(n);
a1vector a1x(n);
for(i = 0; i < n; i++)
a1x[i] = x[i] = double(i + 1);
// declare the parameters as the independent variable
CppAD::Independent(a1x);
// arguments to taylor_ode
Ode G(a1x); // function that defines the ODE
size_t order = n; // order of Taylor's method used
size_t nstep = 2; // number of steps to take
a1double a1dt = double(1.); // Delta t for each step
// value of y(t, x) at the initial time
a1vector a1y_ini(n);
for(i = 0; i < n; i++)
a1y_ini[i] = 0.;
// integrate the differential equation
a1vector a1y_final(n);
a1y_final = taylor_ode(G, order, nstep, a1dt, a1y_ini);
// define differentiable function object f : x -> y_final
// that computes its derivatives in double
CppAD::ADFun<double> f(a1x, a1y_final);
// check function values
double check = 1.;
double t = double(nstep) * Value(a1dt);
for(i = 0; i < n; i++)
{ check *= x[i] * t / double(i + 1);
ok &= CppAD::NearEqual(Value(a1y_final[i]), check, eps, eps);
}
// evaluate the Jacobian of h at a
d_vector jac ( f.Jacobian(x) );
// There appears to be a bug in g++ version 4.4.2 because it generates
// a warning for the equivalent form
// d_vector jac = f.Jacobian(x);
// check Jacobian
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
{ double jac_ij = jac[i * n + j];
if( i < j )
check = 0.;
else
check = Value( a1y_final[i] ) / x[j];
ok &= CppAD::NearEqual(jac_ij, check, eps, eps);
}
}
return ok;
}
// END C++
|