File: ode_stiff.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (204 lines) | stat: -rw-r--r-- 5,510 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin ode_stiff.cpp}
{xrst_spell
  rosen
}

A Stiff Ode: Example and Test
#############################

Define
:math:`x : \B{R} \rightarrow \B{R}^2` by

.. math::
   :nowrap:

   \begin{eqnarray}
      x_0 (0)        & = & 1 \\
      x_1 (0)        & = & 0 \\
      x_0^\prime (t) & = & - a_0 x_0 (t) \\
      x_1^\prime (t) & = & + a_0 x_0 (t) - a_1 x_1 (t)
   \end{eqnarray}

If :math:`a_0 \gg a_1 > 0`, this is a stiff Ode and
the analytic solution is

.. math::
   :nowrap:

   \begin{eqnarray}
   x_0 (t)    & = & \exp( - a_0 t ) \\
   x_1 (t)    & = & a_0 [ \exp( - a_1 t ) - \exp( - a_0 t ) ] / ( a_0 - a_1 )
   \end{eqnarray}

The example tests Rosen34 using the relations above:

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end ode_stiff.cpp}
*/
// BEGIN C++

# include <cppad/cppad.hpp>

// To print the comparison, change the 0 to 1 on the next line.
# define CPPAD_ODE_STIFF_PRINT 0

namespace {
   // --------------------------------------------------------------
   class Fun {
   private:
      CPPAD_TESTVECTOR(double) a;
   public:
      // constructor
      Fun(const CPPAD_TESTVECTOR(double)& a_) : a(a_)
      { }
      // compute f(t, x)
      void Ode(
         const double                    &t,
         const CPPAD_TESTVECTOR(double) &x,
         CPPAD_TESTVECTOR(double)       &f)
      {  f[0]  = - a[0] * x[0];
         f[1]  = + a[0] * x[0] - a[1] * x[1];
      }
      // compute partial of f(t, x) w.r.t. t
      void Ode_ind(
         const double                    &t,
         const CPPAD_TESTVECTOR(double) &x,
         CPPAD_TESTVECTOR(double)       &f_t)
      {  f_t[0] = 0.;
         f_t[1] = 0.;
      }
      // compute partial of f(t, x) w.r.t. x
      void Ode_dep(
         const double                    &t,
         const CPPAD_TESTVECTOR(double) &x,
         CPPAD_TESTVECTOR(double)       &f_x)
      {  f_x[0] = -a[0];
         f_x[1] = 0.;
         f_x[2] = +a[0];
         f_x[3] = -a[1];
      }
   };
   // --------------------------------------------------------------
   class RungeMethod {
   private:
      Fun F;
   public:
      // constructor
      RungeMethod(const CPPAD_TESTVECTOR(double) &a_) : F(a_)
      { }
      void step(
         double                     ta ,
         double                     tb ,
         CPPAD_TESTVECTOR(double) &xa ,
         CPPAD_TESTVECTOR(double) &xb ,
         CPPAD_TESTVECTOR(double) &eb )
      {  xb = CppAD::Runge45(F, 1, ta, tb, xa, eb);
      }
      size_t order(void)
      {  return 5; }
   };
   class RosenMethod {
   private:
      Fun F;
   public:
      // constructor
      RosenMethod(const CPPAD_TESTVECTOR(double) &a_) : F(a_)
      { }
      void step(
         double                     ta ,
         double                     tb ,
         CPPAD_TESTVECTOR(double) &xa ,
         CPPAD_TESTVECTOR(double) &xb ,
         CPPAD_TESTVECTOR(double) &eb )
      {  xb = CppAD::Rosen34(F, 1, ta, tb, xa, eb);
      }
      size_t order(void)
      {  return 4; }
   };
}

bool OdeStiff(void)
{  bool ok = true;     // initial return value

   CPPAD_TESTVECTOR(double) a(2);
   a[0] = 1e3;
   a[1] = 1.;
   RosenMethod rosen(a);
   RungeMethod runge(a);
   Fun          gear(a);

   CPPAD_TESTVECTOR(double) xi(2);
   xi[0] = 1.;
   xi[1] = 0.;

   CPPAD_TESTVECTOR(double) eabs(2);
   eabs[0] = 1e-6;
   eabs[1] = 1e-6;

   CPPAD_TESTVECTOR(double) ef(2);
   CPPAD_TESTVECTOR(double) xf(2);
   CPPAD_TESTVECTOR(double) maxabs(2);
   size_t                nstep;

   size_t k;
   for(k = 0; k < 3; k++)
   {
      size_t M    = 5;
      double ti   = 0.;
      double tf   = 1.;
      double smin = 1e-7;
      double sini = 1e-7;
      double smax = 1.;
      double scur = .5;
      double erel = 0.;

      if( k == 0 )
      {  xf = CppAD::OdeErrControl(rosen, ti, tf,
         xi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);
      }
      else if( k == 1 )
      {  xf = CppAD::OdeErrControl(runge, ti, tf,
         xi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);
      }
      else if( k == 2 )
      {  xf = CppAD::OdeGearControl(gear, M, ti, tf,
         xi, smin, smax, sini, eabs, erel, ef, maxabs, nstep);
      }
      double x0 = exp(-a[0]*tf);
      ok &= CppAD::NearEqual(x0, xf[0], 0., eabs[0]);
      ok &= CppAD::NearEqual(0., ef[0], 0., eabs[0]);

      double x1 = a[0] *
         (exp(-a[1]*tf) - exp(-a[0]*tf))/(a[0] - a[1]);
      ok &= CppAD::NearEqual(x1, xf[1], 0., eabs[1]);
      ok &= CppAD::NearEqual(0., ef[1], 0., eabs[0]);
# if CPPAD_ODE_STIFF_PRINT
      const char* method[]={ "Rosen34", "Runge45", "Gear5" };
      std::cout << std::endl;
      std::cout << "method     = " << method[k] << std::endl;
      std::cout << "nstep      = " << nstep  << std::endl;
      std::cout << "x0         = " << x0 << std::endl;
      std::cout << "xf[0]      = " << xf[0] << std::endl;
      std::cout << "x0 - xf[0] = " << x0 - xf[0] << std::endl;
      std::cout << "ef[0]      = " << ef[0] << std::endl;
      std::cout << "x1         = " << x1 << std::endl;
      std::cout << "xf[1]      = " << xf[1] << std::endl;
      std::cout << "x1 - xf[1] = " << x1 - xf[1] << std::endl;
      std::cout << "ef[1]      = " << ef[1] << std::endl;
# endif
   }

   return ok;
}

// END C++