1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin rev_checkpoint.cpp}
Reverse Mode General Case (Checkpointing): Example and Test
###########################################################
See Also
********
:ref:`checkpoint<chkpoint_one-name>`
Purpose
*******
Break a large computation into pieces and only store values at the
interface of the pieces (this is much easier to do using :ref:`checkpoint<chkpoint_one-name>` ).
In actual applications, there may be many functions, but
for this example there are only two.
The functions
:math:`F : \B{R}^2 \rightarrow \B{R}^2`
and
:math:`G : \B{R}^2 \rightarrow \B{R}^2`
defined by
.. math::
F(x) = \left( \begin{array}{c} x_0 x_1 \\ x_1 - x_0 \end{array} \right)
\; , \;
G(y) = \left( \begin{array}{c} y_0 - y_1 \\ y_1 y_0 \end{array} \right)
Processing Steps
****************
We apply reverse mode to compute the derivative of
:math:`H : \B{R}^2 \rightarrow \B{R}`
is defined by
.. math::
:nowrap:
\begin{eqnarray}
H(x)
& = & G_0 [ F(x) ] + G_1 [ F(x) ]
\\
& = & x_0 x_1 - ( x_1 - x_0 ) + x_0 x_1 ( x_1 - x_0 )
\\
& = & x_0 x_1 ( 1 - x_0 + x_1 ) - x_1 + x_0
\end{eqnarray}
Given the zero and first order Taylor coefficients
:math:`x^{(0)}` and :math:`x^{(1)}`,
we use :math:`X(t)`, :math:`Y(t)` and :math:`Z(t)`
for the corresponding functions; i.e.,
.. math::
:nowrap:
\begin{eqnarray}
X(t) & = & x^{(0)} + x^{(1)} t
\\
Y(t) & = & F[X(t)] = y^{(0)} + y^{(1)} t + O(t^2)
\\
Z(t) & = & G \{ F [ X(t) ] \} = z^{(0)} + z^{(1)} t + O(t^2)
\\
h^{(0)} & = & z^{(0)}_0 + z^{(0)}_1
\\
h^{(1)} & = & z^{(1)}_0 + z^{(1)}_1
\end{eqnarray}
Here are the processing steps:
#. Use forward mode on :math:`F(x)` to compute
:math:`y^{(0)}` and :math:`y^{(1)}`.
#. Free some, or all, of the memory corresponding to :math:`F(x)`.
#. Use forward mode on :math:`G(y)` to compute
:math:`z^{(0)}` and :math:`z^{(1)}`
#. Use reverse mode on :math:`G(y)` to compute the derivative of
:math:`h^{(1)}` with respect to
:math:`y^{(0)}` and :math:`y^{(1)}`.
#. Free all the memory corresponding to :math:`G(y)`.
#. Use reverse mode on :math:`F(x)` to compute the derivative of
:math:`h^{(1)}` with respect to
:math:`x^{(0)}` and :math:`x^{(1)}`.
This uses the following relations:
.. math::
:nowrap:
\begin{eqnarray}
\partial_{x(0)} h^{(1)} [ x^{(0)} , x^{(1)} ]
& = &
\partial_{y(0)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(0)} y^{(0)} [ x^{(0)} , x^{(1)} ]
\\
& + &
\partial_{y(1)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(0)} y^{(1)} [ x^{(0)} , x^{(1)} ]
\\
\partial_{x(1)} h^{(1)} [ x^{(0)} , x^{(1)} ]
& = &
\partial_{y(0)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(1)} y^{(0)} [ x^{(0)} , x^{(1)} ]
\\
& + &
\partial_{y(1)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(1)} y^{(1)} [ x^{(0)} , x^{(1)} ]
\end{eqnarray}
where :math:`\partial_{x(0)}` denotes the partial with respect
to :math:`x^{(0)}`.
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end rev_checkpoint.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
template <class Vector>
Vector F(const Vector& x)
{ Vector y(2);
y[0] = x[0] * x[1];
y[1] = x[1] - x[0];
return y;
}
template <class Vector>
Vector G(const Vector& y)
{ Vector z(2);
z[0] = y[0] - y[1];
z[1] = y[1] * y[0];
return z;
}
}
namespace {
bool rev_checkpoint_case(bool free_all)
{ bool ok = true;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
using CppAD::AD;
using CppAD::NearEqual;
CppAD::ADFun<double> f, g, empty;
// specify the Taylor coefficients for X(t)
size_t n = 2;
CPPAD_TESTVECTOR(double) x0(n), x1(n);
x0[0] = 1.; x0[1] = 2.;
x1[0] = 3.; x1[1] = 4.;
// record the function F(x)
CPPAD_TESTVECTOR(AD<double>) X(n), Y(n);
size_t i;
for(i = 0; i < n; i++)
X[i] = x0[i];
CppAD::Independent(X);
Y = F(X);
f.Dependent(X, Y);
// a function object with an almost empty operation sequence
CppAD::Independent(X);
empty.Dependent(X, X);
// compute the Taylor coefficients for Y(t)
CPPAD_TESTVECTOR(double) y0(n), y1(n);
y0 = f.Forward(0, x0);
y1 = f.Forward(1, x1);
if( free_all )
f = empty;
else
{ // free all the Taylor coefficients stored in f
f.capacity_order(0);
}
// record the function G(x)
CPPAD_TESTVECTOR(AD<double>) Z(n);
CppAD::Independent(Y);
Z = G(Y);
g.Dependent(Y, Z);
// compute the Taylor coefficients for Z(t)
CPPAD_TESTVECTOR(double) z0(n), z1(n);
z0 = g.Forward(0, y0);
z1 = g.Forward(1, y1);
// check zero order Taylor coefficient for h^0 = z_0^0 + z_1^0
double check = x0[0] * x0[1] * (1. - x0[0] + x0[1]) - x0[1] + x0[0];
double h0 = z0[0] + z0[1];
ok &= NearEqual(h0, check, eps, eps);
// check first order Taylor coefficient h^1
check = x0[0] * x0[1] * (- x1[0] + x1[1]) - x1[1] + x1[0];
check += x1[0] * x0[1] * (1. - x0[0] + x0[1]);
check += x0[0] * x1[1] * (1. - x0[0] + x0[1]);
double h1 = z1[0] + z1[1];
ok &= NearEqual(h1, check, eps, eps);
// compute the derivative with respect to y^0 and y^0 of h^1
size_t p = 2;
CPPAD_TESTVECTOR(double) w(n*p), dw(n*p);
w[0*p+0] = 0.; // coefficient for z_0^0
w[0*p+1] = 1.; // coefficient for z_0^1
w[1*p+0] = 0.; // coefficient for z_1^0
w[1*p+1] = 1.; // coefficient for z_1^1
dw = g.Reverse(p, w);
// We are done using g, so we can free its memory.
g = empty;
// We need to use f next.
if( free_all )
{ // we must again record the operation sequence for F(x)
CppAD::Independent(X);
Y = F(X);
f.Dependent(X, Y);
}
// now recompute the Taylor coefficients corresponding to F(x)
// (we already know the result; i.e., y0 and y1).
f.Forward(0, x0);
f.Forward(1, x1);
// compute the derivative with respect to x^0 and x^0 of
// h^1 = z_0^1 + z_1^1
CPPAD_TESTVECTOR(double) dv(n*p);
dv = f.Reverse(p, dw);
// check partial of h^1 w.r.t x^0_0
check = x0[1] * (- x1[0] + x1[1]);
check -= x1[0] * x0[1];
check += x1[1] * (1. - x0[0] + x0[1]) - x0[0] * x1[1];
ok &= NearEqual(dv[0*p+0], check, eps, eps);
// check partial of h^1 w.r.t x^0_1
check = x0[0] * (- x1[0] + x1[1]);
check += x1[0] * (1. - x0[0] + x0[1]) + x1[0] * x0[1];
check += x0[0] * x1[1];
ok &= NearEqual(dv[1*p+0], check, eps, eps);
// check partial of h^1 w.r.t x^1_0
check = 1. - x0[0] * x0[1];
check += x0[1] * (1. - x0[0] + x0[1]);
ok &= NearEqual(dv[0*p+1], check, eps, eps);
// check partial of h^1 w.r.t x^1_1
check = x0[0] * x0[1] - 1.;
check += x0[0] * (1. - x0[0] + x0[1]);
ok &= NearEqual(dv[1*p+1], check, eps, eps);
return ok;
}
}
bool rev_checkpoint(void)
{ bool ok = true;
ok &= rev_checkpoint_case(true);
ok &= rev_checkpoint_case(false);
return ok;
}
// END C++
|