File: stack_machine.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (208 lines) | stat: -rw-r--r-- 5,467 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin stack_machine.cpp}

Example Differentiating a Stack Machine Interpreter
###################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end stack_machine.cpp}
*/
// BEGIN C++

# include <cstring>
# include <cstddef>
# include <cstdlib>
# include <cctype>
# include <cassert>
# include <stack>

# include <cppad/cppad.hpp>

namespace {
// Begin empty namespace ------------------------------------------------

bool is_number( const std::string &s )
{  char ch = s[0];
   bool number = (std::strchr("0123456789.", ch) != 0);
   return number;
}
bool is_binary( const std::string &s )
{  char ch = s[0];
   bool binary = (strchr("+-*/.", ch) != 0);
   return binary;
}
bool is_variable( const std::string &s )
{  char ch = s[0];
   bool variable = ('a' <= ch) && (ch <= 'z');
   return variable;
}

void StackMachine(
   std::stack< std::string >          &token_stack  ,
   CppAD::vector< CppAD::AD<double> > &variable     )
{  using std::string;
   using std::stack;

   using CppAD::AD;

   stack< AD<double> > value_stack;
   string              token;
   AD<double>          value_one;
   AD<double>          value_two;

   while( ! token_stack.empty() )
   {  string s = token_stack.top();
      token_stack.pop();

      if( is_number(s) )
      {  value_one = std::atof( s.c_str() );
         value_stack.push( value_one );
      }
      else if( is_variable(s) )
      {  value_one = variable[ size_t(s[0]) - size_t('a') ];
         value_stack.push( value_one );
      }
      else if( is_binary(s) )
      {  assert( value_stack.size() >= 2 );
         value_one = value_stack.top();
         value_stack.pop();
         value_two = value_stack.top();
         value_stack.pop();

         switch( s[0] )
         {
            case '+':
            value_stack.push(value_one + value_two);
            break;

            case '-':
            value_stack.push(value_one - value_two);
            break;

            case '*':
            value_stack.push(value_one * value_two);
            break;

            case '/':
            value_stack.push(value_one / value_two);
            break;

            default:
            assert(0);
         }
      }
      else if( s[0] == '=' )
      {  assert( value_stack.size() >= 1 );
         assert( token_stack.size() >= 1 );
         //
         s = token_stack.top();
         token_stack.pop();
         //
         assert( is_variable( s ) );
         value_one = value_stack.top();
         value_stack.pop();
         //
         variable[ size_t(s[0]) - size_t('a') ] = value_one;
      }
      else assert(0);
   }
   return;
}

// End empty namespace -------------------------------------------------------
}

bool StackMachine(void)
{  bool ok = true;

   using std::string;
   using std::stack;

   using CppAD::AD;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
   using CppAD::vector;

   // The users program in that stack machine language
   const char *program[] = {
      "1.0", "a", "+", "=", "b",  // b = a + 1
      "2.0", "b", "*", "=", "c",  // c = b * 2
      "3.0", "c", "-", "=", "d",  // d = c - 3
      "4.0", "d", "/", "=", "e"   // e = d / 4
   };
   size_t n_program = sizeof( program ) / sizeof( program[0] );

   // put the program in the token stack
   stack< string > token_stack;
   size_t i = n_program;
   while(i--)
      token_stack.push( program[i] );

   // domain space vector
   size_t n = 1;
   vector< AD<double> > X(n);
   X[0] = 0.;

   // declare independent variables and start tape recording
   CppAD::Independent(X);

   // x[0] corresponds to a in the stack machine
   vector< AD<double> > variable(26);
   variable[0] = X[0];

   // calculate the resutls of the program
   StackMachine( token_stack , variable);

   // range space vector
   size_t m = 4;
   vector< AD<double> > Y(m);
   Y[0] = variable[1];   // b = a + 1
   Y[1] = variable[2];   // c = (a + 1) * 2
   Y[2] = variable[3];   // d = (a + 1) * 2 - 3
   Y[3] = variable[4];   // e = ( (a + 1) * 2 - 3 ) / 4

   // create f : X -> Y and stop tape recording
   CppAD::ADFun<double> f(X, Y);

   // use forward mode to evaluate function at different argument value
   size_t p = 0;
   vector<double> x(n);
   vector<double> y(m);
   x[0] = 1.;
   y    = f.Forward(p, x);

   // check function values
   ok &= (y[0] == x[0] + 1.);
   ok &= (y[1] == (x[0] + 1.) * 2.);
   ok &= (y[2] == (x[0] + 1.) * 2. - 3.);
   ok &= (y[3] == ( (x[0] + 1.) * 2. - 3.) / 4.);

   // Use forward mode (because x is shorter than y) to calculate Jacobian
   p = 1;
   vector<double> dx(n);
   vector<double> dy(m);
   dx[0] = 1.;
   dy    = f.Forward(p, dx);
   ok   &= NearEqual(dy[0], 1., eps99, eps99);
   ok   &= NearEqual(dy[1], 2., eps99, eps99);
   ok   &= NearEqual(dy[2], 2., eps99, eps99);
   ok   &= NearEqual(dy[3], .5, eps99, eps99);

   // Use Jacobian routine (which automatically decides which mode to use)
   dy = f.Jacobian(x);
   ok   &= NearEqual(dy[0], 1., eps99, eps99);
   ok   &= NearEqual(dy[1], 2., eps99, eps99);
   ok   &= NearEqual(dy[2], 2., eps99, eps99);
   ok   &= NearEqual(dy[3], .5, eps99, eps99);

   return ok;
}
// END C++