1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin bthread_get_started.cpp}
{xrst_template ,
example/multi_thread/template/get_started.xrst
title: Getting Started Using @Name@ Threads With CppAD
start source code after: // <space> BEGIN_C++
end source code before: // <space> END_C++
@Name@ , Boost
@####@ , #####
@DEFAULT@ , USE_DEFAULT_ADFUN_CONSTRUCTOR
}
{xrst_end bthread_get_started.cpp}
------------------------------------------------------------------------------
*/
// BEGIN_C++
# include <cppad/cppad.hpp>
# include <boost/thread.hpp>
# define USE_DEFAULT_ADFUN_CONSTRUCTOR 1
namespace {
//
// d_vector, ad_vector, fun_vector, bthread_vector
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR( CppAD::AD<double> ) ad_vector;
typedef CPPAD_TESTVECTOR( CppAD::ADFun<double> ) fun_vector;
typedef CPPAD_TESTVECTOR( boost::thread* ) bthread_vector;
//
// std::vector<bool> does not support the data method; see
// https://en.cppreference.com/w/cpp/container/vector_bool
// 'Does not necessarily store its elements as a contiguous array.'
typedef CppAD::vector<bool> b_vector;
//
// thread_specific_data_
void cleanup(size_t* thread_num)
{ delete thread_num;
return;
}
boost::thread_specific_ptr<size_t> thread_specific_data_(cleanup);
//
// sequential_execution_
bool sequential_execution_ = true;
//
// in_parallel
bool in_parallel(void)
{ return ! sequential_execution_; }
//
// thread_number
size_t thread_number(void)
{ // return thread_all_[thread_num].thread_num
return *thread_specific_data_.get();
}
//
// partial
double partial(
CppAD::ADFun<double>& f, size_t j, const d_vector& x
)
{ size_t nx = x.size();
d_vector dx(nx), dy(1);
for(size_t k = 0; k < nx; ++k)
dx[k] = 0.0;
dx[j] = 1.0;
f.Forward(0, x);
dy = f.Forward(1, dx);
return dy[0];
}
//
// run_one_thread
void run_one_thread(
size_t thread_num ,
CppAD::ADFun<double>* f_ptr ,
size_t j_begin ,
size_t j_end ,
const d_vector* x_ptr ,
d_vector* Jac_ptr ,
bool* ok_ptr )
{ //
// x, Jac, ok
CppAD::ADFun<double>& f = *f_ptr;
const d_vector& x = *x_ptr;
d_vector& Jac = *Jac_ptr;
bool& ok = *ok_ptr;
//
// thread_specific_data_
// This sets up the thread_number function for this thread.
if( thread_num != 0 )
{ thread_specific_data_.reset(new size_t(thread_num) );
ok &= thread_number() == thread_num;
}
//
// f
// This will cause an assert if Taylor coefficients were allocated
// by a different thread.
f.capacity_order(0);
//
// Jac
for(size_t j = j_begin; j < j_end; ++j)
Jac[j] = partial(f, j, x);
}
}
bool get_started(void)
{ // ok
bool ok = true;
//
// eps99
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
//
// nx, ax
size_t nx = 10;
ad_vector ax(nx);
for(size_t j = 0; j < nx; ++j)
ax[j] = 1.0;
CppAD::Independent(ax);
//
// fun
ad_vector ay(1);
ay[0] = ax[0];
for(size_t j = 1; j < nx; ++j)
ay[0] *= ax[j];
# if USE_DEFAULT_ADFUN_CONSTRUCTOR
CppAD::ADFun<double> fun;
fun.Dependent(ax, ay);
# else
// This allocates memory for first order Taylor coefficients using thread 0.
// An assert will occur at f.capacity_order(0) in run_one_thread when
// it is called by a different thread.
CppAD::ADFun<double> fun(ax, ay);
# endif
//
// num_threads, f_thread, ok_thread
size_t num_threads = 4;
fun_vector f_thread(num_threads);
b_vector ok_thread(num_threads);
for(size_t thread_num = 0; thread_num < num_threads; ++thread_num)
{ f_thread[thread_num] = fun;
ok_thread[thread_num] = true;
}
//
// x
d_vector x(nx);
for(size_t j = 0; j < nx; ++j)
x[j] = 1.0 + 1.0 / double(j+1);
//
// thread_specific_data_
// must be set for this thread before calling parall_setup or parallel_ad
{ size_t thread_num = 0;
thread_specific_data_.reset(new size_t(thread_num) );
ok &= thread_number() == thread_num;
}
//
// parallel_setup
CppAD::thread_alloc::parallel_setup(
num_threads, in_parallel, thread_number
);
//
// parallel_ad
CppAD::parallel_ad<double>();
//
// hold_memory
// optional and may improve speed if you do a lot of memory allocation
CppAD::thread_alloc::hold_memory(true);
//
// thread_ptr
bthread_vector thread_ptr(num_threads - 1);
//
// Jac
d_vector Jac(nx);
//
// n_per_thread, n_extra
size_t n_per_thread = nx / num_threads;
size_t n_extra = nx % num_threads;
//
// sequential_execution_
sequential_execution_ = false;
ok &= in_parallel();
//
// Jac
// Launch num_threads - 1 boost threads
size_t j_begin = n_per_thread;
size_t j_end;
for(size_t thread_num = 1; thread_num < num_threads; ++thread_num)
{ j_end = j_begin + n_per_thread;
if( thread_num <= n_extra )
++j_end;
CppAD::ADFun<double>* f_ptr = &f_thread[thread_num];
bool* ok_ptr = &ok_thread[thread_num];
thread_ptr[thread_num-1] = new boost::thread(
run_one_thread, thread_num, f_ptr, j_begin, j_end, &x, &Jac, ok_ptr
);
j_begin = j_end;
}
ok &= j_end == nx;
{ // run master thread's indices
size_t thread_num = 0;
j_begin = 0;
j_end = j_begin + n_per_thread;
CppAD::ADFun<double, double>* f_ptr = &f_thread[thread_num];
bool* ok_ptr = &ok_thread[thread_num];
run_one_thread(thread_num, f_ptr, j_begin, j_end, &x, &Jac, ok_ptr);
}
// wait for other threads to finish
for(size_t thread_num = 1; thread_num < num_threads; ++thread_num)
thread_ptr[thread_num-1]->join();
//
// sequential_execution_
sequential_execution_ = true;
CppAD::thread_alloc::parallel_setup(1, nullptr, nullptr);
ok &= ! in_parallel();
//
// hold_memory
// free memory for other threads before this (the master thread)
ok &= thread_number() == 0;
CppAD::thread_alloc::hold_memory(false);
for(size_t thread_num = 1; thread_num < num_threads; ++thread_num)
{ CppAD::thread_alloc::free_available(thread_num);
ok &= ok_thread[thread_num];
}
ok &= ok_thread[0];
CppAD::thread_alloc::free_available(0);
//
// j
for(size_t j = 0; j < nx; ++j)
{ //
// check
double check = 1.0;
for(size_t k = 0; k < nx; ++k)
if(k != j)
check *= x[k];
//
// ok
ok &= CppAD::NearEqual(Jac[j], check, eps99, eps99);
}
return ok;
}
// END_C++
|