1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin team_bthread.cpp}
Boost Thread Implementation of a Team of AD Threads
###################################################
See :ref:`team_thread.hpp-name` for this routines specifications.
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end team_bthread.cpp}
*/
// BEGIN C++
# include <boost/thread.hpp>
# include <cppad/cppad.hpp>
# include "../team_thread.hpp"
# define MAX_NUMBER_THREADS 48
namespace {
using CppAD::thread_alloc;
// number of threads in the team
size_t num_threads_ = 1;
// no need to cleanup up thread specific data
void cleanup(size_t*)
{ return; }
// thread specific pointer the thread number (initialize as null)
boost::thread_specific_ptr<size_t> thread_num_ptr_(cleanup);
// type of the job currently being done by each thread
enum thread_job_t { init_enum, work_enum, join_enum } thread_job_;
// barrier used to wait for other threads to finish work
boost::barrier* wait_for_work_ = nullptr;
// barrier used to wait for master thread to set next job
boost::barrier* wait_for_job_ = nullptr;
// Are we in sequential mode; i.e., other threads are waiting for
// master thread to set up next job ?
bool sequential_execution_ = true;
// structure with information for one thread
typedef struct {
// The thread
boost::thread* bthread;
// CppAD thread number as global (pointed to by thread_num_ptr_)
size_t thread_num;
// true if no error for this thread, false otherwise.
bool ok;
} thread_one_t;
// vector with information for all threads
thread_one_t thread_all_[MAX_NUMBER_THREADS];
// pointer to function that does the work for one thread
void (* worker_)(void) = nullptr;
// ---------------------------------------------------------------------
// in_parallel()
bool in_parallel(void)
{ return ! sequential_execution_; }
// ---------------------------------------------------------------------
// thread_number()
size_t thread_number(void)
{ // return thread_all_[thread_num].thread_num
return *thread_num_ptr_.get();
}
// --------------------------------------------------------------------
// function that gets called by boost thread constructor
void thread_work(size_t thread_num)
{ bool ok = wait_for_work_ != nullptr;
ok &= wait_for_job_ != nullptr;
ok &= thread_num != 0;
// thread specific storage of thread number for this thread
thread_num_ptr_.reset(& thread_all_[thread_num].thread_num );
while( true )
{
// Use wait_for_jog_ to give master time in sequential mode
// (so it can change global information like thread_job_)
wait_for_job_->wait();
// case where we are terminating this thread (no more work)
if( thread_job_ == join_enum)
break;
// only other case once wait_for_job_ has been completed (so far)
ok &= thread_job_ == work_enum;
worker_();
// Use wait_for_work_ to inform master that our work is done and
// that this thread will not use global infromation until
// passing its barrier wait_for_job_ above.
wait_for_work_->wait();
}
thread_all_[thread_num].ok &= ok;
return;
}
}
bool team_create(size_t num_threads)
{ bool ok = true;;
if( num_threads > MAX_NUMBER_THREADS )
{ std::cerr << "team_create: num_threads greater than ";
std::cerr << MAX_NUMBER_THREADS << std::endl;
exit(1);
}
// check that we currently do not have multiple threads running
ok = num_threads_ == 1;
ok &= wait_for_work_ == nullptr;
ok &= wait_for_job_ == nullptr;
ok &= sequential_execution_;
size_t thread_num;
for(thread_num = 0; thread_num < num_threads; thread_num++)
{ // Each thread gets a pointer to its version of this thread_num
// so it knows which section of thread_all it is working with
thread_all_[thread_num].thread_num = thread_num;
// initialize
thread_all_[thread_num].ok = true;
thread_all_[0].bthread = nullptr;
}
// Finish setup of thread_all_ for this thread
thread_num_ptr_.reset(& thread_all_[0].thread_num);
// Now that thread_number() has necessary information for the case
// num_threads_ == 1, and while still in sequential mode,
// call setup for using CppAD::AD<double> in parallel mode.
thread_alloc::parallel_setup(num_threads, in_parallel, thread_number);
thread_alloc::hold_memory(true);
CppAD::parallel_ad<double>();
// now change num_threads_ to its final value.
num_threads_ = num_threads;
// initialize two barriers, one for work done, one for new job ready
wait_for_work_ = new boost::barrier( (unsigned int) num_threads );
wait_for_job_ = new boost::barrier( (unsigned int) num_threads );
// initial job for the threads
thread_job_ = init_enum;
if( num_threads > 1 )
sequential_execution_ = false;
// This master thread is already running, we need to create
// num_threads - 1 more threads
for(thread_num = 1; thread_num < num_threads; thread_num++)
{ // Create the thread with thread number equal to thread_num
thread_all_[thread_num].bthread =
new boost::thread(thread_work, thread_num);
}
// Current state is other threads are at wait_for_job_.
// This master thread (thread zero) has not completed wait_for_job_
sequential_execution_ = true;
return ok;
}
bool team_work(void worker(void))
{
// Current state is other threads are at wait_for_job_.
// This master thread (thread zero) has not completed wait_for_job_
bool ok = sequential_execution_;
ok &= thread_number() == 0;
ok &= wait_for_work_ != nullptr;
ok &= wait_for_job_ != nullptr;
// set global version of this work routine
worker_ = worker;
// set the new job that other threads are waiting for
thread_job_ = work_enum;
// Enter parallel exectuion when master thread calls wait_for_job_
if( num_threads_ > 1 )
sequential_execution_ = false;
wait_for_job_->wait();
// Now do the work in this thread and then wait
// until all threads have completed wait_for_work_
worker();
wait_for_work_->wait();
// Current state is other threads are at wait_for_job_.
// This master thread (thread zero) has not completed wait_for_job_
sequential_execution_ = true;
size_t thread_num;
for(thread_num = 0; thread_num < num_threads_; thread_num++)
ok &= thread_all_[thread_num].ok;
return ok;
}
bool team_destroy(void)
{ // Current state is other threads are at wait_for_job_.
// This master thread (thread zero) has not completed wait_for_job_
bool ok = sequential_execution_;
ok &= thread_number() == 0;
ok &= wait_for_work_ != nullptr;
ok &= wait_for_job_ != nullptr;
// set the new job that other threads are waiting for
thread_job_ = join_enum;
// enter parallel exectuion soon as master thread completes wait_for_job_
if( num_threads_ > 1 )
sequential_execution_ = false;
wait_for_job_->wait();
// now wait for the other threads to be destroyed
size_t thread_num;
ok &= thread_all_[0].bthread == nullptr;
for(thread_num = 1; thread_num < num_threads_; thread_num++)
{ thread_all_[thread_num].bthread->join();
delete thread_all_[thread_num].bthread;
thread_all_[thread_num].bthread = nullptr;
}
// now we are down to just the master thread (thread zero)
sequential_execution_ = true;
// destroy wait_for_work_
delete wait_for_work_;
wait_for_work_ = nullptr;
// destroy wait_for_job_
delete wait_for_job_;
wait_for_job_ = nullptr;
// check ok before changing num_threads_
for(thread_num = 0; thread_num < num_threads_; thread_num++)
ok &= thread_all_[thread_num].ok;
// now inform CppAD that there is only one thread
num_threads_ = 1;
thread_alloc::parallel_setup(num_threads_, nullptr, nullptr);
thread_alloc::hold_memory(false);
CppAD::parallel_ad<double>();
return ok;
}
const char* team_name(void)
{ return "bthread"; }
// END C++
|