1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin multi_chkpoint_one_algo app}
chkpoint_one Algorithm that Computes Square Root
################################################
Syntax
******
| *checkpoint_algo* ( *au* , *ay* )
Purpose
*******
This algorithm computes a square root using Newton's method.
It is meant to be very inefficient in order to demonstrate timing results.
au
**
This argument has prototype
``const`` *ADvector* & *au*
where *ADvector* is a
:ref:`simple vector class<SimpleVector-name>` with elements
of type ``AD<double>`` .
The size of *au* is three.
y_initial
=========
We use the notation
*y_initial* = *au* [0]
for the initial value of the Newton iterate.
y_squared
=========
We use the notation
*y_squared* = *au* [1]
for the value we are taking the square root of.
ay
**
This argument has prototype
*ADvector* & *ay*
The size of *ay* is one and
*ay* [0] is the square root of *y_squared* .
Source
******
{xrst_literal
// BEGIN ALGO C++
// END ALGO C++
}
{xrst_end multi_chkpoint_one_algo}
*/
// BEGIN ALGO C++
// includes used by all source code in multi_chkpoint_one.cpp file
# include <cppad/cppad.hpp>
# include "multi_chkpoint_one.hpp"
# include "team_thread.hpp"
//
namespace {
using CppAD::thread_alloc; // fast multi-threading memory allocator
using CppAD::vector; // uses thread_alloc
//
typedef CppAD::AD<double> a_double;
void checkpoint_algo(const vector<a_double>& au , vector<a_double>& ay)
{
// extract components of argument vector
a_double y_initial = au[0];
a_double y_squared = au[1];
// Use Newton's method to solve f(y) = y^2 = y_squared
a_double y_itr = y_initial;
for(size_t itr = 0; itr < 20; itr++)
{ // solve (y - y_itr) * f'(y_itr) = y_squared - y_itr^2
a_double fp_itr = 2.0 * y_itr;
y_itr = y_itr + (y_squared - y_itr * y_itr) / fp_itr;
}
// return the Newton approximation for f(y) = y_squared
ay[0] = y_itr;
}
}
// END ALGO C++
/*
{xrst_begin multi_chkpoint_one_common app}
Multi-Threaded chkpoint_one Common Information
##############################################
Purpose
*******
This source code defines the common variables that are used by
the ``multi_chkpoint_one_`` *name* functions.
Source
******
{xrst_literal
// BEGIN COMMON C++
// END COMMON C++
}
{xrst_end multi_chkpoint_one_common}
*/
// BEGIN COMMON C++
namespace {
// Number of threads, set by multi_chkpoint_one_time
// (zero means one thread with no multi-threading setup)
size_t num_threads_ = 0;
// We can use one checkpoint function for all threads because
// there is no member data that gets changed during worker call.
// This needs to stay in scope for as long as a recording will use it.
// We cannot be in parallel mode when this object is created or deleted.
// We use a pointer so that there is no left over memory in thread zero.
CppAD::checkpoint<double>* a_square_root_ = nullptr;
// structure with information for one thread
typedef struct {
// used by worker to compute the square root,
// set by multi_chkpoint_one_setup
CppAD::ADFun<double>* fun;
//
// value we are computing square root of, set by multi_chkpoint_one_setup
vector<double>* y_squared;
//
// square root, set by worker
vector<double>* square_root;
//
// false if an error occurs, true otherwise, set by worker
bool ok;
} work_one_t;
//
// Vector with information for all threads
// (uses pointers instead of values to avoid false sharing)
// allocated by multi_chkpoint_one_setup, freed by multi_chkpoint_one_takedown
work_one_t* work_all_[CPPAD_MAX_NUM_THREADS];
}
// END COMMON C++
/*
-------------------------------------------------------------------------------
{xrst_begin multi_chkpoint_one_setup app}
Multi-Threaded chkpoint_one Set Up
##################################
Syntax
******
*ok* = ``multi_chkpoint_one_setup`` ( *y_squared* )
Purpose
*******
This routine splits up the computation into the individual threads.
Thread
******
It is assumed that this function is called by thread zero
and all the other threads are blocked (waiting).
y_squared
*********
This argument has prototype
``const vector<double>&`` *y_squared*
and its size is equal to the number of equations to solve.
It is the values that we are computing the square root of.
ok
**
This return value has prototype
``bool`` *ok*
If it is false,
``multi_chkpoint_one_setup`` detected an error.
Source
******
{xrst_literal
// BEGIN SETUP C++
// END SETUP C++
}
{xrst_end multi_chkpoint_one_setup}
*/
// BEGIN SETUP C++
namespace {
bool multi_chkpoint_one_setup(const vector<double>& y_squared)
{ size_t num_threads = std::max(num_threads_, size_t(1));
bool ok = num_threads == thread_alloc::num_threads();
ok &= thread_alloc::thread_num() == 0;
//
// declare independent variable variable vector
vector<a_double> ax(1);
ax[0] = 2.0;
CppAD::Independent(ax);
//
// argument and result for checkpoint algorithm
vector<a_double> au(2), ay(1);
au[0] = ax[0]; // y_initial
au[1] = ax[0]; // y_squared
// put user checkpoint function in recording
(*a_square_root_)(au, ay);
// f(u) = sqrt(u)
CppAD::ADFun<double> fun(ax, ay);
//
// number of square roots for each thread
size_t per_thread = (y_squared.size() + num_threads - 1) / num_threads;
size_t y_index = 0;
//
for(size_t thread_num = 0; thread_num < num_threads; thread_num++)
{ // allocate separate memory for each thread to avoid false sharing
size_t min_bytes(sizeof(work_one_t)), cap_bytes;
void* v_ptr = thread_alloc::get_memory(min_bytes, cap_bytes);
work_all_[thread_num] = static_cast<work_one_t*>(v_ptr);
//
// Run constructor on work_all_[thread_num]->fun
work_all_[thread_num]->fun = new CppAD::ADFun<double>;
//
// Run constructor on work_all_[thread_num] vectors
work_all_[thread_num]->y_squared = new vector<double>;
work_all_[thread_num]->square_root = new vector<double>;
//
// Each worker gets a separate copy of fun. This is necessary because
// the Taylor coefficients will be set by each thread.
*(work_all_[thread_num]->fun) = fun;
//
// values we are computing square root of for this thread
ok &= 0 == work_all_[thread_num]->y_squared->size();
for(size_t i = 0; i < per_thread; i++)
if( y_index < y_squared.size() )
work_all_[thread_num]->y_squared->push_back(y_squared[y_index++]);
//
// set to false in case this thread's worker does not get called
work_all_[thread_num]->ok = false;
}
ok &= y_index == y_squared.size();
//
return ok;
}
}
// END SETUP C++
/*
------------------------------------------------------------------------------
{xrst_begin multi_chkpoint_one_worker app}
Multi-Threaded chkpoint_one Worker
##################################
Purpose
*******
This routine does the computation for one thread.
Source
******
{xrst_literal
// BEGIN WORKER C++
// END WORKER C++
}
{xrst_end multi_chkpoint_one_worker}
*/
// BEGIN WORKER C++
namespace {
void multi_chkpoint_one_worker(void)
{ size_t thread_num = thread_alloc::thread_num();
size_t num_threads = std::max(num_threads_, size_t(1));
bool ok = thread_num < num_threads;
//
vector<double> x(1), y(1);
size_t n = work_all_[thread_num]->y_squared->size();
work_all_[thread_num]->square_root->resize(n);
for(size_t i = 0; i < n; i++)
{ x[0] = (* work_all_[thread_num]->y_squared )[i];
y = work_all_[thread_num]->fun->Forward(0, x);
//
(* work_all_[thread_num]->square_root )[i] = y[0];
}
work_all_[thread_num]->ok = ok;
}
}
// END WORKER C++
/*
------------------------------------------------------------------------------
{xrst_begin multi_chkpoint_one_takedown app}
Multi-Threaded chkpoint_one Take Down
#####################################
Syntax
******
*ok* = ``multi_chkpoint_one_takedown`` ( *square_root* )
Purpose
*******
This routine gathers up the results for each thread and
frees memory that was allocated by :ref:`multi_chkpoint_one_setup-name` .
Thread
******
It is assumed that this function is called by thread zero
and all the other threads are blocked (waiting).
square_root
***********
This argument has prototype
``vector<double>&`` *square_root*
The input value of *square_root* does not matter.
Upon return,
it has the same size and is the element by element square root of
:ref:`multi_chkpoint_one_setup@y_squared` .
ok
**
This return value has prototype
``bool`` *ok*
If it is false,
``multi_chkpoint_one_takedown`` detected an error.
Source
******
{xrst_literal
// BEGIN TAKEDOWN C++
// END TAKEDOWN C++
}
{xrst_end multi_chkpoint_one_takedown}
*/
// BEGIN TAKEDOWN C++
namespace {
bool multi_chkpoint_one_takedown(vector<double>& square_root)
{ bool ok = true;
ok &= thread_alloc::thread_num() == 0;
size_t num_threads = std::max(num_threads_, size_t(1));
//
// extract square roots in original order
square_root.resize(0);
for(size_t thread_num = 0; thread_num < num_threads; thread_num++)
{ // results for this thread
size_t n = work_all_[thread_num]->square_root->size();
for(size_t i = 0; i < n; i++)
square_root.push_back((* work_all_[thread_num]->square_root )[i]);
}
//
// go down so that free memory for other threads before memory for master
size_t thread_num = num_threads;
while(thread_num--)
{ // check that this tread was ok with the work it did
ok &= work_all_[thread_num]->ok;
//
// run destructor on vector object for this thread
delete work_all_[thread_num]->y_squared;
delete work_all_[thread_num]->square_root;
//
// run destructor on function object for this thread
delete work_all_[thread_num]->fun;
//
// delete problem specific information
void* v_ptr = static_cast<void*>( work_all_[thread_num] );
thread_alloc::return_memory( v_ptr );
//
// Note that checkpoint object has memory connect to each thread
// thread_alloc::inuse(thread_num) cannot be zero until it is deleted
if( thread_num > 0 )
{ ok &= thread_alloc::inuse(thread_num) > 0;
//
// return all memory that is not in use and
// but being held for future use by this thread
thread_alloc::free_available(thread_num);
}
}
return ok;
}
}
// END TAKEDOWN C++
/*
{xrst_begin multi_chkpoint_one_run app}
Run Multi-Threaded chkpoint_one Calculation
###########################################
Syntax
******
*ok* = ``multi_chkpoint_one_run`` ( *y_squared* , *square_root* )
Thread
******
It is assumed that this function is called by thread zero
and all the other threads are blocked (waiting).
y_squared
*********
This argument has prototype
``const vector<double>&`` *y_squared*
and its size is equal to the number of threads.
It is the values that we are computing the square root of.
square_root
***********
This argument has prototype
``vector<double>&`` *square_root*
The input value of *square_root* does not matter.
Upon return,
it has the same size and
is the element by element square root of *y_squared* .
ok
**
This return value has prototype
``bool`` *ok*
If it is false,
``multi_chkpoint_one_run`` detected an error.
Source
******
{xrst_literal
// BEGIN RUN C++
// END RUN C++
}
{xrst_end multi_chkpoint_one_run}
------------------------------------------------------------------------------
*/
// BEGIN RUN C++
namespace {
bool multi_chkpoint_one_run(
const vector<double>& y_squared ,
vector<double>& square_root )
{
bool ok = true;
ok &= thread_alloc::thread_num() == 0;
// setup the work for multi-threading
ok &= multi_chkpoint_one_setup(y_squared);
// now do the work for each thread
if( num_threads_ > 0 )
team_work( multi_chkpoint_one_worker );
else
multi_chkpoint_one_worker();
// combine the result for each thread and takedown the multi-threading.
ok &= multi_chkpoint_one_takedown(square_root);
return ok;
}
}
// END RUN C++
/*
------------------------------------------------------------------------------
{xrst_begin multi_chkpoint_one_time app}
Timing Test for Multi-Threaded chkpoint_one Calculation
#######################################################
Syntax
******
| *ok* = ``multi_chkpoint_one_time`` (
| |tab| *time_out* , *test_time* , *num_threads* , *num_solve*
| )
Thread
******
It is assumed that this function is called by thread zero in sequential
mode; i.e., not :ref:`in_parallel<ta_in_parallel-name>` .
time_out
********
This argument has prototype
``double&`` *time_out*
Its input value of the argument does not matter.
Upon return it is the number of wall clock seconds
used by :ref:`multi_chkpoint_one_run-name` .
test_time
*********
This argument has prototype
``double`` *test_time*
and is the minimum amount of wall clock time that the test should take.
The number of repeats for the test will be increased until this time
is reached.
The reported *time_out* is the total wall clock time divided by the
number of repeats.
num_threads
***********
This argument has prototype
``size_t`` *num_threads*
It specifies the number of threads that are available for this test.
If it is zero, the test is run without the multi-threading environment and
1 == ``thread_alloc::num_threads`` ()
If it is non-zero, the test is run with the multi-threading and
*num_threads* = ``thread_alloc::num_threads`` ()
num_solve
*********
This specifies the number of square roots that will be solved for.
ok
**
The return value has prototype
``bool`` *ok*
If it is true,
``harmonic_time`` passed the correctness test and
``multi_chkpoint_one_time`` did not detect an error.
Otherwise it is false.
{xrst_end multi_chkpoint_one_time}
*/
// BEGIN TIME C++
namespace {
// values we are taking the square root of
vector<double> y_squared_;
// results of the square root calculations
vector<double> square_root_;
//
void test_once(void)
{ bool ok = multi_chkpoint_one_run(y_squared_, square_root_);
if( ! ok )
{ std::cerr << "multi_chkpoint_one_run: error" << std::endl;
exit(1);
}
return;
}
//
void test_repeat(size_t repeat)
{ size_t i;
for(i = 0; i < repeat; i++)
test_once();
return;
}
}
// This is the only routine that is accessible outside of this file
bool multi_chkpoint_one_time(
double& time_out, double test_time, size_t num_threads, size_t num_solve
)
{ bool ok = true;
//
size_t initial_inuse = thread_alloc::inuse(0);
// number of threads, zero for no multi-threading
num_threads_ = num_threads;
// values we are talking the square root of
y_squared_.resize(num_solve);
for(size_t i_solve = 0; i_solve < num_solve; i_solve++)
y_squared_[i_solve] = double(i_solve) + 2.0;
// must create a_square_root_ in sequential mode
vector<a_double> au(2), ay(1);
au[0] = 2.0;
au[1] = 2.0;
a_square_root_ = new CppAD::checkpoint<double>(
"square_root", checkpoint_algo, au, ay
);
// create team of threads
ok &= thread_alloc::in_parallel() == false;
if( num_threads > 0 )
{ team_create(num_threads);
ok &= num_threads == thread_alloc::num_threads();
}
else
{ ok &= 1 == thread_alloc::num_threads();
}
// run the test case and set the time return value
time_out = CppAD::time_test(test_repeat, test_time);
// destroy team of threads
if( num_threads > 0 )
team_destroy();
ok &= thread_alloc::in_parallel() == false;
// must delete a_square_root_ in sequential mode
delete a_square_root_;
// free static variables in atomic_base class
CppAD::atomic_base<double>::clear();
// correctness check
ok &= square_root_.size() == num_solve;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
for(size_t i = 0; i < num_solve; i++)
{ double check = std::sqrt( y_squared_[i] );
ok &= std::fabs( square_root_[i] / check - 1.0 ) <= eps99;
}
//
// free memory in CppAD vectors that are still in scope
y_squared_.clear();
square_root_.clear();
au.clear();
ay.clear();
//
// check that no static variables in this file are holding onto memory
ok &= initial_inuse == thread_alloc::inuse(0);
//
return ok;
}
// END TIME C++
|