File: rev_hes_sparsity.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (104 lines) | stat: -rw-r--r-- 2,876 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin rev_hes_sparsity.cpp}

Reverse Mode Hessian Sparsity: Example and Test
###############################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end rev_hes_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>

bool rev_hes_sparsity(void)
{  bool ok = true;
   using CppAD::AD;
   typedef CPPAD_TESTVECTOR(size_t)     SizeVector;
   typedef CppAD::sparse_rc<SizeVector> sparsity;
   //
   // domain space vector
   size_t n = 3;
   CPPAD_TESTVECTOR(AD<double>) ax(n);
   ax[0] = 0.;
   ax[1] = 1.;
   ax[2] = 2.;

   // declare independent variables and start recording
   CppAD::Independent(ax);

   // range space vector
   size_t m = 2;
   CPPAD_TESTVECTOR(AD<double>) ay(m);
   ay[0] = sin( ax[2] );
   ay[1] = ax[0] * ax[1];

   // create f: x -> y and stop tape recording
   CppAD::ADFun<double> f(ax, ay);

   // sparsity pattern for the identity matrix
   size_t nr     = n;
   size_t nc     = n;
   size_t nnz_in = n;
   sparsity pattern_in(nr, nc, nnz_in);
   for(size_t k = 0; k < nnz_in; k++)
   {  size_t r = k;
      size_t c = k;
      pattern_in.set(k, r, c);
   }
   // compute sparsity pattern for J(x) = F'(x)
   bool transpose       = false;
   bool dependency      = false;
   bool internal_bool   = false;
   sparsity pattern_out;
   f.for_jac_sparsity(
      pattern_in, transpose, dependency, internal_bool, pattern_out
   );
   //
   // compute sparsity pattern for H(x) = F_1''(x)
   CPPAD_TESTVECTOR(bool) select_range(m);
   select_range[0] = false;
   select_range[1] = true;
   f.rev_hes_sparsity(
      select_range, transpose, internal_bool, pattern_out
   );
   size_t nnz = pattern_out.nnz();
   ok        &= nnz == 2;
   ok        &= pattern_out.nr() == n;
   ok        &= pattern_out.nc() == n;
   {  // check results
      const SizeVector& row( pattern_out.row() );
      const SizeVector& col( pattern_out.col() );
      SizeVector row_major = pattern_out.row_major();
      //
      ok &= row[ row_major[0] ] ==  0  && col[ row_major[0] ] ==  1;
      ok &= row[ row_major[1] ] ==  1  && col[ row_major[1] ] ==  0;
   }
   //
   // compute sparsity pattern for H(x) = F_0''(x)
   select_range[0] = true;
   select_range[1] = false;
   f.rev_hes_sparsity(
      select_range, transpose, internal_bool, pattern_out
   );
   nnz = pattern_out.nnz();
   ok &= nnz == 1;
   ok &= pattern_out.nr() == n;
   ok &= pattern_out.nc() == n;
   {  // check results
      const SizeVector& row( pattern_out.row() );
      const SizeVector& col( pattern_out.col() );
      //
      ok &= row[0] ==  2  && col[0] ==  2;
   }
   return ok;
}
// END C++