File: sparse2eigen.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (120 lines) | stat: -rw-r--r-- 3,372 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin sparse2eigen.cpp}

Converting CppAD Sparse Matrix to Eigen Format: Example and Test
################################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end sparse2eigen.cpp}
*/
// BEGIN C++
# include <cppad/utility/sparse2eigen.hpp>
bool sparse2eigen(void)
{  bool ok = true;
   //
   typedef CppAD::vector<size_t>                 s_vector;
   typedef CppAD::vector<double>                 d_vector;
   typedef CppAD::sparse_rc<s_vector>            sparse_rc;
   typedef CppAD::sparse_rcv<s_vector, d_vector> sparse_rcv;
   //
   // sparsity pattern
   size_t nr  = 3;
   size_t nc  = 4;
   size_t nnz = 2 * nr;
   sparse_rc pattern(nr, nc, nnz);
   for(size_t i = 0; i < nr; i++)
   {  for(size_t j = i; j <= i + 1; j++)
      {  size_t k = i + j;
         pattern.set(k, i, j);
      }
   }
   //
   // sparse matrix
   sparse_rcv source(pattern);
   for(size_t i = 0; i < nr; i++)
   {  for(size_t j = i; j <= i + 1; j++)
      {  size_t k = i + j;
         double v = double(k) / 2.0;
         source.set(k, v);
      }
   }
   //
   //  example using row major order
   {  Eigen::SparseMatrix<double, Eigen::RowMajor> destination;
      CppAD::sparse2eigen(source, destination);
      //
      typedef
      Eigen::SparseMatrix<double, Eigen::RowMajor>::InnerIterator iterator;
      //
      // check result
      const double* d_value = destination.valuePtr();
      size_t k = 0;
      for(int i = 0; i < destination.outerSize(); ++i)
      {
         for(iterator itr(destination, i); itr; ++itr)
         {  // check row
            ok &= itr.row() == i;
            //
            // check column
            if( k % 2 == 0 )
               ok &= itr.col() == i;
            else
               ok &= itr.col() == (i+1);
            //
            // check value
            ok  &= itr.value() == double( itr.row() + itr.col() ) / 2.0;
            ok  &= itr.value() == d_value[k];
            //
            ++k;
         }
      }
      ok &= k == nnz;
   }
   //
   //  example using column major order
   {  Eigen::SparseMatrix<double, Eigen::ColMajor> destination;
      CppAD::sparse2eigen(source, destination);
      //
      typedef
      Eigen::SparseMatrix<double, Eigen::ColMajor>::InnerIterator iterator;
      //
      // check result
      const double* d_value = destination.valuePtr();
      size_t k = 0;
      for(int j = 0; j < destination.outerSize(); ++j)
      {  for(iterator itr(destination, j); itr; ++itr)
         {  // check column
            ok &= itr.col() == j;
            //
            // check row
            if( j == 0 )
            {  assert( k == 0 );
               ok &= itr.row() == 0;
            }
            else if( k % 2 == 1 )
               ok &= itr.row() == j - 1;
            else
               ok &= itr.row() == j;
            //
            // check value
            ok  &= itr.value() == double( itr.row() + itr.col() ) / 2.0;
            ok  &= itr.value() == d_value[k];
            //
            ++k;
         }
      }
      ok &= k == nnz;
   }
   //
   return ok;
}
// END C++