1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin sparse_jacobian.cpp}
Sparse Jacobian: Example and Test
#################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end sparse_jacobian.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // ---------------------------------------------------------
bool reverse()
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR(size_t) i_vector;
size_t i, j, k, ell;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 4;
a_vector a_x(n);
for(j = 0; j < n; j++)
a_x[j] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(a_x);
size_t m = 3;
a_vector a_y(m);
a_y[0] = a_x[0] + a_x[1];
a_y[1] = a_x[2] + a_x[3];
a_y[2] = a_x[0] + a_x[1] + a_x[2] + a_x[3] * a_x[3] / 2.;
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// new value for the independent variable vector
d_vector x(n);
for(j = 0; j < n; j++)
x[j] = double(j);
// Jacobian of y without sparsity pattern
d_vector jac(m * n);
jac = f.SparseJacobian(x);
/*
[ 1 1 0 0 ]
jac = [ 0 0 1 1 ]
[ 1 1 1 x_3]
*/
d_vector check(m * n);
check[0] = 1.; check[1] = 1.; check[2] = 0.; check[3] = 0.;
check[4] = 0.; check[5] = 0.; check[6] = 1.; check[7] = 1.;
check[8] = 1.; check[9] = 1.; check[10] = 1.; check[11] = x[3];
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// using packed boolean sparsity patterns
CppAD::vectorBool s_b(m * m), p_b(m * n);
for(i = 0; i < m; i++)
{ for(ell = 0; ell < m; ell++)
s_b[i * m + ell] = false;
s_b[i * m + i] = true;
}
p_b = f.RevSparseJac(m, s_b);
jac = f.SparseJacobian(x, p_b);
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// using vector of sets sparsity patterns
std::vector< std::set<size_t> > s_s(m), p_s(m);
for(i = 0; i < m; i++)
s_s[i].insert(i);
p_s = f.RevSparseJac(m, s_s);
jac = f.SparseJacobian(x, p_s);
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// using row and column indices to compute non-zero in rows 1 and 2
// (skip row 0).
size_t K = 6;
i_vector row(K), col(K);
jac.resize(K);
k = 0;
for(j = 0; j < n; j++)
{ for(i = 1; i < m; i++)
{ ell = i * n + j;
if( p_b[ell] )
{ ok &= check[ell] != 0.;
row[k] = i;
col[k] = j;
k++;
}
}
}
ok &= k == K;
// empty work structure
CppAD::sparse_jacobian_work work;
// could use p_b
size_t n_sweep = f.SparseJacobianReverse(x, p_s, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 2;
// now recompute at a different x value (using work from previous call)
check[11] = x[3] = 10.;
std::vector< std::set<size_t> > not_used;
n_sweep = f.SparseJacobianReverse(x, not_used, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 2;
return ok;
}
bool forward()
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR(size_t) i_vector;
size_t i, j, k, ell;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 3;
a_vector a_x(n);
for(j = 0; j < n; j++)
a_x[j] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(a_x);
size_t m = 4;
a_vector a_y(m);
a_y[0] = a_x[0] + a_x[2];
a_y[1] = a_x[0] + a_x[2];
a_y[2] = a_x[1] + a_x[2];
a_y[3] = a_x[1] + a_x[2] * a_x[2] / 2.;
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// new value for the independent variable vector
d_vector x(n);
for(j = 0; j < n; j++)
x[j] = double(j);
// Jacobian of y without sparsity pattern
d_vector jac(m * n);
jac = f.SparseJacobian(x);
/*
[ 1 0 1 ]
jac = [ 1 0 1 ]
[ 0 1 1 ]
[ 0 1 x_2 ]
*/
d_vector check(m * n);
check[0] = 1.; check[1] = 0.; check[2] = 1.;
check[3] = 1.; check[4] = 0.; check[5] = 1.;
check[6] = 0.; check[7] = 1.; check[8] = 1.;
check[9] = 0.; check[10] = 1.; check[11] = x[2];
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// test using packed boolean vectors for sparsity pattern
CppAD::vectorBool r_b(n * n), p_b(m * n);
for(j = 0; j < n; j++)
{ for(ell = 0; ell < n; ell++)
r_b[j * n + ell] = false;
r_b[j * n + j] = true;
}
p_b = f.ForSparseJac(n, r_b);
jac = f.SparseJacobian(x, p_b);
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// test using vector of sets for sparsity pattern
std::vector< std::set<size_t> > r_s(n), p_s(m);
for(j = 0; j < n; j++)
r_s[j].insert(j);
p_s = f.ForSparseJac(n, r_s);
jac = f.SparseJacobian(x, p_s);
for(ell = 0; ell < size_t(check.size()); ell++)
ok &= NearEqual(check[ell], jac[ell], eps, eps );
// using row and column indices to compute non-zero elements excluding
// row 0 and column 0.
size_t K = 5;
i_vector row(K), col(K);
jac.resize(K);
k = 0;
for(i = 1; i < m; i++)
{ for(j = 1; j < n; j++)
{ ell = i * n + j;
if( p_b[ell] )
{ ok &= check[ell] != 0.;
row[k] = i;
col[k] = j;
k++;
}
}
}
ok &= k == K;
// empty work structure
CppAD::sparse_jacobian_work work;
// could use p_s
size_t n_sweep = f.SparseJacobianForward(x, p_b, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 2;
// now recompute at a different x value (using work from previous call)
check[11] = x[2] = 10.;
n_sweep = f.SparseJacobianForward(x, p_s, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 2;
return ok;
}
} // End empty namespace
bool sparse_jacobian(void)
{ bool ok = true;
ok &= forward();
ok &= reverse();
return ok;
}
// END C++
|