1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin sparse_sub_hes.cpp}
Subset of a Sparse Hessian: Example and Test
############################################
Purpose
*******
This example uses a
:ref:`sparse_hessian@p@Column Subset` of the sparsity pattern
to compute a subset of the Hessian.
See Also
********
:ref:`sub_sparse_hes.cpp-name`
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end sparse_sub_hes.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
bool sparse_sub_hes(void)
{ bool ok = true;
using CppAD::AD;
typedef CPPAD_TESTVECTOR(size_t) SizeVector;
typedef CPPAD_TESTVECTOR(double) DoubleVector;
typedef CppAD::sparse_rc<SizeVector> sparsity;
//
// domain space vector
size_t n = 4;
CPPAD_TESTVECTOR(AD<double>) ax(n);
for(size_t j = 0; j < n; j++)
ax[j] = double(j);
// declare independent variables and start recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
ay[0] = 0.0;
for(size_t j = 0; j < n; j++)
ay[0] += double(j+1) * ax[0] * ax[j];
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
// sparsity pattern for the identity matrix
size_t nr = n;
size_t nc = n;
size_t nnz_in = n;
sparsity pattern_in(nr, nc, nnz_in);
for(size_t k = 0; k < nnz_in; k++)
{ size_t r = k;
size_t c = k;
pattern_in.set(k, r, c);
}
// compute sparsity pattern for J(x) = f'(x)
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
sparsity pattern_out;
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
//
// compute sparsity pattern for H(x) = f''(x)
CPPAD_TESTVECTOR(bool) select_range(m);
select_range[0] = true;
CppAD::sparse_hes_work work;
f.rev_hes_sparsity(
select_range, transpose, internal_bool, pattern_out
);
size_t nnz = pattern_out.nnz();
ok &= nnz == 7;
ok &= pattern_out.nr() == n;
ok &= pattern_out.nc() == n;
{ // check results
const SizeVector& row( pattern_out.row() );
const SizeVector& col( pattern_out.col() );
SizeVector row_major = pattern_out.row_major();
//
ok &= row[ row_major[0] ] == 0 && col[ row_major[0] ] == 0;
ok &= row[ row_major[1] ] == 0 && col[ row_major[1] ] == 1;
ok &= row[ row_major[2] ] == 0 && col[ row_major[2] ] == 2;
ok &= row[ row_major[3] ] == 0 && col[ row_major[3] ] == 3;
//
ok &= row[ row_major[4] ] == 1 && col[ row_major[4] ] == 0;
ok &= row[ row_major[5] ] == 2 && col[ row_major[5] ] == 0;
ok &= row[ row_major[6] ] == 3 && col[ row_major[6] ] == 0;
}
//
// Only interested in cross-terms. Since we are not computing rwo 0,
// we do not need sparsity entries in row 0.
CppAD::sparse_rc<SizeVector> subset_pattern(n, n, 3);
for(size_t k = 0; k < 3; k++)
subset_pattern.set(k, k+1, 0);
CppAD::sparse_rcv<SizeVector, DoubleVector> subset( subset_pattern );
//
// argument and weight values for computation
CPPAD_TESTVECTOR(double) x(n), w(m);
for(size_t j = 0; j < n; j++)
x[j] = double(n) / double(j+1);
w[0] = 1.0;
//
std::string coloring = "cppad.general";
size_t n_sweep = f.sparse_hes(
x, w, subset, subset_pattern, coloring, work
);
ok &= n_sweep == 1;
for(size_t k = 0; k < 3; k++)
{ size_t i = k + 1;
ok &= subset.val()[k] == double(i + 1);
}
//
// convert subset from lower triangular to upper triangular
for(size_t k = 0; k < 3; k++)
subset_pattern.set(k, 0, k+1);
subset = CppAD::sparse_rcv<SizeVector, DoubleVector>( subset_pattern );
//
// This will require more work because the Hessian is computed
// column by column (not row by row).
work.clear();
n_sweep = f.sparse_hes(
x, w, subset, subset_pattern, coloring, work
);
ok &= n_sweep == 3;
//
// but it will get the right answer
for(size_t k = 0; k < 3; k++)
{ size_t i = k + 1;
ok &= subset.val()[k] == double(i + 1);
}
return ok;
}
// END C++
|