File: sparse_sub_hes.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (145 lines) | stat: -rw-r--r-- 4,410 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin sparse_sub_hes.cpp}

Subset of a Sparse Hessian: Example and Test
############################################

Purpose
*******
This example uses a
:ref:`sparse_hessian@p@Column Subset` of the sparsity pattern
to compute a subset of the Hessian.

See Also
********
:ref:`sub_sparse_hes.cpp-name`

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end sparse_sub_hes.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
bool sparse_sub_hes(void)
{  bool ok = true;
   using CppAD::AD;
   typedef CPPAD_TESTVECTOR(size_t)     SizeVector;
   typedef CPPAD_TESTVECTOR(double)     DoubleVector;
   typedef CppAD::sparse_rc<SizeVector> sparsity;
   //
   // domain space vector
   size_t n = 4;
   CPPAD_TESTVECTOR(AD<double>) ax(n);
   for(size_t j = 0; j < n; j++)
      ax[j] = double(j);

   // declare independent variables and start recording
   CppAD::Independent(ax);

   // range space vector
   size_t m = 1;
   CPPAD_TESTVECTOR(AD<double>) ay(m);
   ay[0] = 0.0;
   for(size_t j = 0; j < n; j++)
      ay[0] += double(j+1) * ax[0] * ax[j];

   // create f: x -> y and stop tape recording
   CppAD::ADFun<double> f(ax, ay);

   // sparsity pattern for the identity matrix
   size_t nr     = n;
   size_t nc     = n;
   size_t nnz_in = n;
   sparsity pattern_in(nr, nc, nnz_in);
   for(size_t k = 0; k < nnz_in; k++)
   {  size_t r = k;
      size_t c = k;
      pattern_in.set(k, r, c);
   }
   // compute sparsity pattern for J(x) = f'(x)
   bool transpose       = false;
   bool dependency      = false;
   bool internal_bool   = false;
   sparsity pattern_out;
   f.for_jac_sparsity(
      pattern_in, transpose, dependency, internal_bool, pattern_out
   );
   //
   // compute sparsity pattern for H(x) = f''(x)
   CPPAD_TESTVECTOR(bool) select_range(m);
   select_range[0]      = true;
   CppAD::sparse_hes_work work;
   f.rev_hes_sparsity(
      select_range, transpose, internal_bool, pattern_out
   );
   size_t nnz = pattern_out.nnz();
   ok        &= nnz == 7;
   ok        &= pattern_out.nr() == n;
   ok        &= pattern_out.nc() == n;
   {  // check results
      const SizeVector& row( pattern_out.row() );
      const SizeVector& col( pattern_out.col() );
      SizeVector row_major = pattern_out.row_major();
      //
      ok &= row[ row_major[0] ] ==  0  && col[ row_major[0] ] ==  0;
      ok &= row[ row_major[1] ] ==  0  && col[ row_major[1] ] ==  1;
      ok &= row[ row_major[2] ] ==  0  && col[ row_major[2] ] ==  2;
      ok &= row[ row_major[3] ] ==  0  && col[ row_major[3] ] ==  3;
      //
      ok &= row[ row_major[4] ] ==  1  && col[ row_major[4] ] ==  0;
      ok &= row[ row_major[5] ] ==  2  && col[ row_major[5] ] ==  0;
      ok &= row[ row_major[6] ] ==  3  && col[ row_major[6] ] ==  0;
   }
   //
   // Only interested in cross-terms. Since we are not computing rwo 0,
   // we do not need sparsity entries in row 0.
   CppAD::sparse_rc<SizeVector> subset_pattern(n, n, 3);
   for(size_t k = 0; k < 3; k++)
      subset_pattern.set(k, k+1, 0);
   CppAD::sparse_rcv<SizeVector, DoubleVector> subset( subset_pattern );
   //
   // argument and weight values for computation
   CPPAD_TESTVECTOR(double) x(n), w(m);
   for(size_t j = 0; j < n; j++)
      x[j] = double(n) / double(j+1);
   w[0] = 1.0;
   //
   std::string coloring = "cppad.general";
   size_t n_sweep = f.sparse_hes(
      x, w, subset, subset_pattern, coloring, work
   );
   ok &= n_sweep == 1;
   for(size_t k = 0; k < 3; k++)
   {  size_t i = k + 1;
      ok &= subset.val()[k] == double(i + 1);
   }
   //
   // convert subset from lower triangular to upper triangular
   for(size_t k = 0; k < 3; k++)
      subset_pattern.set(k, 0, k+1);
   subset = CppAD::sparse_rcv<SizeVector, DoubleVector>( subset_pattern );
   //
   // This will require more work because the Hessian is computed
   // column by column (not row by row).
   work.clear();
   n_sweep = f.sparse_hes(
      x, w, subset, subset_pattern, coloring, work
   );
   ok &= n_sweep == 3;
   //
   // but it will get the right answer
   for(size_t k = 0; k < 3; k++)
   {  size_t i = k + 1;
      ok &= subset.val()[k] == double(i + 1);
   }
   return ok;
}
// END C++