1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin sub_sparse_hes.cpp}
{xrst_spell
nv
}
Computing Sparse Hessian for a Subset of Variables
##################################################
Purpose
*******
This example uses
:ref:`multiple levels of AD<mul_level-name>`
to compute the Hessian for a subset of the variables
without having to compute the sparsity pattern for the entire function.
See Also
********
:ref:`sparse_sub_hes.cpp-name` , :ref:`sparsity_sub.cpp-name` ,
Function
********
We consider the function
:math:`f : \B{R}^{nu} \times \B{R}^{nv} \rightarrow \B{R}` defined by
.. math::
f (u, v) =
\left( \sum_{j=0}^{nu-1} u_j^3 \right)
\left( \sum_{j=0}^{nv-1} v_j \right)
Subset
******
Suppose that we are only interested computing the function
.. math::
H(u, v) = \partial_u \partial_u f (u, v)
where this Hessian is sparse.
Example
*******
The following code shows one way to compute this subset of the
Hessian of :math:`f`.
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end sub_sparse_hes.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
using CppAD::vector;
template <class Scalar>
Scalar f(const vector<Scalar>& u,const vector<Scalar>& v)
{ size_t i;
Scalar sum_v = Scalar(0);
for(i = 0; i < v.size(); i++)
sum_v += v[i];
Scalar sum_cube_u = Scalar(0);
for(i = 0; i < u.size(); i++)
sum_cube_u += u[i] * u[i] * u[i] / 6.0;
return sum_v * sum_cube_u;
}
}
bool sub_sparse_hes(void)
{ bool ok = true;
using CppAD::AD;
typedef AD<double> adouble;
typedef AD<adouble> a2double;
typedef vector< std::set<size_t> > pattern;
double eps = 10. * std::numeric_limits<double>::epsilon();
size_t i, j;
// start recording with x = (u , v)
size_t nu = 10;
size_t nv = 5;
size_t n = nu + nv;
vector<adouble> ax(n);
for(j = 0; j < n; j++)
ax[j] = adouble(j + 2);
CppAD::Independent(ax);
// extract u as independent variables
vector<a2double> a2u(nu);
for(j = 0; j < nu; j++)
a2u[j] = a2double(j + 2);
CppAD::Independent(a2u);
// extract v as parameters
vector<a2double> a2v(nv);
for(j = 0; j < nv; j++)
a2v[j] = ax[nu+j];
// record g(u)
vector<a2double> a2y(1);
a2y[0] = f(a2u, a2v);
CppAD::ADFun<adouble> g;
g.Dependent(a2u, a2y);
// compue sparsity pattern for Hessian of g(u)
pattern r(nu), s(1);
for(j = 0; j < nu; j++)
r[j].insert(j);
g.ForSparseJac(nu, r);
s[0].insert(0);
pattern p = g.RevSparseHes(nu, s);
// Row and column indices for non-zeros in lower triangle of Hessian
vector<size_t> row, col;
for(i = 0; i < nu; i++)
{ std::set<size_t>::const_iterator itr;
for(itr = p[i].begin(); itr != p[i].end(); itr++)
{ j = *itr;
if( j <= i )
{ row.push_back(i);
col.push_back(j);
}
}
}
size_t K = row.size();
CppAD::sparse_hessian_work work;
vector<adouble> au(nu), ahes(K), aw(1);
aw[0] = 1.0;
for(j = 0; j < nu; j++)
au[j] = ax[j];
size_t n_sweep = g.SparseHessian(au, aw, p, row, col, ahes, work);
// The Hessian w.r.t u is diagonal
ok &= n_sweep == 1;
// record H(u, v) = Hessian of f w.r.t u
CppAD::ADFun<double> H(ax, ahes);
// remove unecessary operations
H.optimize();
// Now evaluate the Hessian at a particular value for u, v
vector<double> u(nu), v(nv), x(n);
for(j = 0; j < n; j++)
x[j] = double(j + 2);
vector<double> hes = H.Forward(0, x);
// Now check the Hessian
double sum_v = 0.0;
for(j = 0; j < nv; j++)
sum_v += x[nu + j];
for(size_t k = 0; k < K; k++)
{ i = row[k];
j = col[k];
ok &= i == j;
double check = sum_v * x[i];
ok &= CppAD::NearEqual(hes[k], check, eps, eps);
}
return ok;
}
// END C++
|