1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin exp_2_cppad}
exp_2: CppAD Forward and Reverse Sweeps
#######################################
Purpose
*******
Use CppAD forward and reverse modes to compute the
partial derivative with respect to :math:`x`,
at the point :math:`x = .5`,
of the function
``exp_2`` ( *x* )
as defined by the :ref:`exp_2.hpp-name` include file.
Exercises
*********
#. Create and test a modified version of the routine below that computes
the same order derivatives with respect to :math:`x`,
at the point :math:`x = .1`
of the function
``exp_2`` ( *x* )
#. Create a routine called
``exp_3`` ( *x* )
that evaluates the function
.. math::
f(x) = 1 + x^2 / 2 + x^3 / 6
Test a modified version of the routine below that computes
the derivative of :math:`f(x)`
at the point :math:`x = .5`.
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp> // https://www.coin-or.org/CppAD/
# include "exp_2.hpp" // second order exponential approximation
bool exp_2_cppad(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::vector; // can use any simple vector template class
using CppAD::NearEqual; // checks if values are nearly equal
// domain space vector
size_t n = 1; // dimension of the domain space
vector< AD<double> > X(n);
X[0] = .5; // value of x for this operation sequence
// declare independent variables and start recording operation sequence
CppAD::Independent(X);
// evaluate our exponential approximation
AD<double> x = X[0];
AD<double> apx = exp_2(x);
// range space vector
size_t m = 1; // dimension of the range space
vector< AD<double> > Y(m);
Y[0] = apx; // variable that represents only range space component
// Create f: X -> Y corresponding to this operation sequence
// and stop recording. This also executes a zero order forward
// sweep using values in X for x.
CppAD::ADFun<double> f(X, Y);
// first order forward sweep that computes
// partial of exp_2(x) with respect to x
vector<double> dx(n); // differential in domain space
vector<double> dy(m); // differential in range space
dx[0] = 1.; // direction for partial derivative
dy = f.Forward(1, dx);
double check = 1.5;
ok &= NearEqual(dy[0], check, 1e-10, 1e-10);
// first order reverse sweep that computes the derivative
vector<double> w(m); // weights for components of the range
vector<double> dw(n); // derivative of the weighted function
w[0] = 1.; // there is only one weight
dw = f.Reverse(1, w); // derivative of w[0] * exp_2(x)
check = 1.5; // partial of exp_2(x) with respect to x
ok &= NearEqual(dw[0], check, 1e-10, 1e-10);
// second order forward sweep that computes
// second partial of exp_2(x) with respect to x
vector<double> x2(n); // second order Taylor coefficients
vector<double> y2(m);
x2[0] = 0.; // evaluate second partial .w.r.t. x
y2 = f.Forward(2, x2);
check = 0.5 * 1.; // Taylor coef is 1/2 second derivative
ok &= NearEqual(y2[0], check, 1e-10, 1e-10);
// second order reverse sweep that computes
// derivative of partial of exp_2(x) w.r.t. x
dw.resize(2 * n); // space for first and second derivatives
dw = f.Reverse(2, w);
check = 1.; // result should be second derivative
ok &= NearEqual(dw[0*2+1], check, 1e-10, 1e-10);
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end exp_2_cppad}
*/
|