File: exp_2_cppad.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (119 lines) | stat: -rw-r--r-- 3,798 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin exp_2_cppad}

exp_2: CppAD Forward and Reverse Sweeps
#######################################

Purpose
*******
Use CppAD forward and reverse modes to compute the
partial derivative with respect to :math:`x`,
at the point :math:`x = .5`,
of the function

   ``exp_2`` ( *x* )

as defined by the :ref:`exp_2.hpp-name` include file.

Exercises
*********

#. Create and test a modified version of the routine below that computes
   the same order derivatives with respect to :math:`x`,
   at the point :math:`x = .1`
   of the function

      ``exp_2`` ( *x* )

#. Create a routine called

      ``exp_3`` ( *x* )

   that evaluates the function

   .. math::

      f(x) = 1 + x^2 / 2 + x^3 / 6

   Test a modified version of the routine below that computes
   the derivative of :math:`f(x)`
   at the point :math:`x = .5`.

{xrst_spell_off}
{xrst_code cpp} */

# include <cppad/cppad.hpp>  // https://www.coin-or.org/CppAD/
# include "exp_2.hpp"        // second order exponential approximation
bool exp_2_cppad(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::vector;    // can use any simple vector template class
   using CppAD::NearEqual; // checks if values are nearly equal

   // domain space vector
   size_t n = 1; // dimension of the domain space
   vector< AD<double> > X(n);
   X[0] = .5;    // value of x for this operation sequence

   // declare independent variables and start recording operation sequence
   CppAD::Independent(X);

   // evaluate our exponential approximation
   AD<double> x   = X[0];
   AD<double> apx = exp_2(x);

   // range space vector
   size_t m = 1;  // dimension of the range space
   vector< AD<double> > Y(m);
   Y[0] = apx;    // variable that represents only range space component

   // Create f: X -> Y corresponding to this operation sequence
   // and stop recording. This also executes a zero order forward
   // sweep using values in X for x.
   CppAD::ADFun<double> f(X, Y);

   // first order forward sweep that computes
   // partial of exp_2(x) with respect to x
   vector<double> dx(n);  // differential in domain space
   vector<double> dy(m);  // differential in range space
   dx[0] = 1.;            // direction for partial derivative
   dy    = f.Forward(1, dx);
   double check = 1.5;
   ok   &= NearEqual(dy[0], check, 1e-10, 1e-10);

   // first order reverse sweep that computes the derivative
   vector<double>  w(m);   // weights for components of the range
   vector<double> dw(n);   // derivative of the weighted function
   w[0] = 1.;              // there is only one weight
   dw   = f.Reverse(1, w); // derivative of w[0] * exp_2(x)
   check = 1.5;            // partial of exp_2(x) with respect to x
   ok   &= NearEqual(dw[0], check, 1e-10, 1e-10);

   // second order forward sweep that computes
   // second partial of exp_2(x) with respect to x
   vector<double> x2(n);     // second order Taylor coefficients
   vector<double> y2(m);
   x2[0] = 0.;               // evaluate second partial .w.r.t. x
   y2    = f.Forward(2, x2);
   check = 0.5 * 1.;         // Taylor coef is 1/2 second derivative
   ok   &= NearEqual(y2[0], check, 1e-10, 1e-10);

   // second order reverse sweep that computes
   // derivative of partial of exp_2(x) w.r.t. x
   dw.resize(2 * n);         // space for first and second derivatives
   dw    = f.Reverse(2, w);
   check = 1.;               // result should be second derivative
   ok   &= NearEqual(dw[0*2+1], check, 1e-10, 1e-10);

   return ok;
}

/* {xrst_code}
{xrst_spell_on}

{xrst_end exp_2_cppad}
*/