1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin exp_eps_cppad}
exp_eps: CppAD Forward and Reverse Sweeps
#########################################
Purpose
*******
Use CppAD forward and reverse modes to compute the
partial derivative with respect to :math:`x`,
at the point :math:`x = .5` and :math:`\varepsilon = .2`,
of the function
``exp_eps`` ( *x* , *epsilon* )
as defined by the :ref:`exp_eps.hpp-name` include file.
Exercises
*********
#. Create and test a modified version of the routine below that computes
the same order derivatives with respect to :math:`x`,
at the point :math:`x = .1` and :math:`\varepsilon = .2`,
of the function
``exp_eps`` ( *x* , *epsilon* )
#. Create and test a modified version of the routine below that computes
partial derivative with respect to :math:`x`,
at the point :math:`x = .1` and :math:`\varepsilon = .2`,
of the function corresponding to the operation sequence
for :math:`x = .5` and :math:`\varepsilon = .2`.
Hint: you could define a vector u with two components and use
*f* . ``Forward`` (0, *u* )
to run zero order forward mode at a point different
form the point where the operation sequence corresponding to
*f* was recorded.
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp> // https://www.coin-or.org/CppAD/
# include "exp_eps.hpp" // our example exponential function approximation
bool exp_eps_cppad(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::vector; // can use any simple vector template class
using CppAD::NearEqual; // checks if values are nearly equal
// domain space vector
size_t n = 2; // dimension of the domain space
vector< AD<double> > U(n);
U[0] = .5; // value of x for this operation sequence
U[1] = .2; // value of e for this operation sequence
// declare independent variables and start recording operation sequence
CppAD::Independent(U);
// evaluate our exponential approximation
AD<double> x = U[0];
AD<double> epsilon = U[1];
AD<double> apx = exp_eps(x, epsilon);
// range space vector
size_t m = 1; // dimension of the range space
vector< AD<double> > Y(m);
Y[0] = apx; // variable that represents only range space component
// Create f: U -> Y corresponding to this operation sequence
// and stop recording. This also executes a zero order forward
// mode sweep using values in U for x and e.
CppAD::ADFun<double> f(U, Y);
// first order forward mode sweep that computes partial w.r.t x
vector<double> du(n); // differential in domain space
vector<double> dy(m); // differential in range space
du[0] = 1.; // x direction in domain space
du[1] = 0.;
dy = f.Forward(1, du); // partial w.r.t. x
double check = 1.5;
ok &= NearEqual(dy[0], check, 1e-10, 1e-10);
// first order reverse mode sweep that computes the derivative
vector<double> w(m); // weights for components of the range
vector<double> dw(n); // derivative of the weighted function
w[0] = 1.; // there is only one weight
dw = f.Reverse(1, w); // derivative of w[0] * exp_eps(x, epsilon)
check = 1.5; // partial w.r.t. x
ok &= NearEqual(dw[0], check, 1e-10, 1e-10);
check = 0.; // partial w.r.t. epsilon
ok &= NearEqual(dw[1], check, 1e-10, 1e-10);
// second order forward sweep that computes
// second partial of exp_eps(x, epsilon) w.r.t. x
vector<double> x2(n); // second order Taylor coefficients
vector<double> y2(m);
x2[0] = 0.; // evaluate partial w.r.t x
x2[1] = 0.;
y2 = f.Forward(2, x2);
check = 0.5 * 1.; // Taylor coef is 1/2 second derivative
ok &= NearEqual(y2[0], check, 1e-10, 1e-10);
// second order reverse sweep that computes
// derivative of partial of exp_eps(x, epsilon) w.r.t. x
dw.resize(2 * n); // space for first and second derivative
dw = f.Reverse(2, w);
check = 1.; // result should be second derivative
ok &= NearEqual(dw[0*2+1], check, 1e-10, 1e-10);
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end exp_eps_cppad}
*/
|