1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
# ifndef CPPAD_VAL_GRAPH_ATOMIC_XAM_HPP
# define CPPAD_VAL_GRAPH_ATOMIC_XAM_HPP
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2023-23 Bradley M. Bell
/*
{xrst_begin val_atomic_xam.hpp dev}
An Example Atomic Function
##########################
Function
********
This function maps :math:`\B{R}^4 \rightarrow \B{R}^2` by
.. math::
f_0 (x) & = x_0 + x_1 \\
f_1 (x) & = x_1 \cdot x_2
Identically Zero
****************
If :math:`x_1` or :math:`x_2` is identically zero,
:math:`f_1 (x)` is identically zero.
The routine below keeps the constant zero,
but the expression it multiplies may get replaced by nan during optimization.
Note the for ``double``, identically zero is the same as equals zero.
Source
******
This is an :ref:`atomic_four-name` implementation
of the function above
{xrst_literal
// BEGIN_VAL_ATOMIC_XAM
// END_VAL_ATOMIC_XAM
}
{xrst_end val_atomic_xam.hpp}
*/
// BEGIN_VAL_ATOMIC_XAM
# include <cppad/cppad.hpp>
class val_atomic_xam : public CppAD::atomic_four<double> {
public:
val_atomic_xam(void) :
CppAD::atomic_four<double>("val_atomic_xam")
{ }
private:
// for_type
bool for_type(
size_t call_id ,
const CppAD::vector<CppAD::ad_type_enum>& type_x ,
CppAD::vector<CppAD::ad_type_enum>& type_y ) override
{
assert( call_id == 0 ); // default value
CPPAD_ASSERT_UNKNOWN( type_x.size() == 4 );
assert( type_y.size() == 2 );
//
type_y[0] = std::max(type_x[0], type_x[1]);
type_y[1] = std::max(type_x[2], type_x[3]);
//
return true;
}
// forward
bool forward(
size_t call_id ,
const CppAD::vector<bool>& select_y ,
size_t order_low ,
size_t order_up ,
const CppAD::vector<double>& taylor_x ,
CppAD::vector<double>& taylor_y ) override
{ //
assert( call_id == 0 ); // default value
assert( order_low == 0);
assert( order_up == 0);
assert( taylor_x.size() == 4 );
assert( taylor_y.size() == 2 );
//
// x, y
const CppAD::vector<double>& x = taylor_x;
CppAD::vector<double>& y = taylor_y;
//
y[0] = x[0] + x[1];
//
// y[1] = x[2] * x[3];
if( x[2] == 0.0 )
y[1] = 0.0;
else if ( x[3] == 0.0 )
y[1] = 0.0;
else
y[1] = x[2] * x[3];
//
return true;
}
bool rev_depend(
size_t call_id ,
const CppAD::vector<bool>& ident_zero_x ,
CppAD::vector<bool>& depend_x ,
const CppAD::vector<bool>& depend_y ) override
{ //
assert( call_id == 0 );
assert( depend_x.size() == 4 );
assert( depend_y.size() == 2 );
//
depend_x[0] = depend_x[1] = depend_y[0];
if( ident_zero_x[2] )
{ // Keep the constant zero (so forward (see above) knows about it).
depend_x[2] = true;
depend_x[3] = false;
}
else if( ident_zero_x[3] )
{ depend_x[2] = false;
// Keep the constant zero (not much overhead in doing so).
depend_x[3] = true;
}
else
depend_x[2] = depend_x[3] = depend_y[1];
//
return true;
}
};
// END_VAL_ATOMIC_XAM
# endif
|