File: glossary.xrst

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (287 lines) | stat: -rw-r--r-- 8,642 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
# SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
# SPDX-FileContributor: 2003-24 Bradley M. Bell
# ----------------------------------------------------------------------------

{xrst_begin glossary app}
{xrst_spell
   is is
}

Glossary
########

AD Function
***********
Given an :ref:`ADFun-name` object *f*
there is a corresponding
AD of *Base* :ref:`operation sequence<glossary@Operation@Sequence>` .
This operation sequence
defines a function
:math:`F : \B{R}^n \rightarrow \B{R}^m`
where :math:`\B{R}` is the space corresponding to objects of type
*Base* (usually the real numbers),
*n* is the size of the :ref:`fun_property@Domain` space, and
*m* is the size of the :ref:`fun_property@Range` space.
We refer to :math:`F` as the AD function corresponding to
the operation sequence stored in the object *f* .
(See the :ref:`FunCheck discussion<FunCheck@Discussion>` for
possible differences between :math:`F(x)` and the algorithm that defined
the operation sequence.)

AD of Base
**********
An object is called an AD of *Base* object its type is
either ``AD`` < *Base* >
(see the default and copy :ref:`constructors<ad_ctor-name>`
or ``VecAD`` < *Base* >:: ``reference`` (see :ref:`VecAD-name` )
for some *Base* type.

AD Type Above Base
******************
If *Base* is a type,
an AD type above *Base*
is the following sequence of types:

   ``AD`` < *Base* > , ``AD< AD<`` *Base* > > , ``AD< AD< AD<`` *Base* > > > , ...

Base Function
*************
A function :math:`f : \B{R} \rightarrow \B{R}`
is referred to as a *Base* function,
if *Base* is a C++ type that represent elements of
the domain and range space of *f* .

Base Type
*********
If *x* is an ``AD`` < *Base* > object,
*Base* is referred to as the base type for *x* .

Elementary Vector
*****************
The *j*-th elementary vector :math:`e^j \in \B{R}^m` is defined by

.. math::

   e_i^j = \left\{ \begin{array}{ll}
      1 & {\rm if} \; i = j \\
      0 & {\rm otherwise}
   \end{array} \right.

Operation
*********

Atomic
======
An atomic *Type* operation is an operation that
has a *Type* result and is not made up of other
more basic operations.

Sequence
========
A sequence of atomic *Type* operations
is called a *Type* operation sequence.
A sequence of atomic :ref:`glossary@AD of Base` operations
is referred to as an AD of *Base* operation sequence.
The abbreviated notation operation sequence is often used
when it is not necessary to specify the type.

Dependent
=========
Suppose that *x* and *y* are *Type* objects and
the result of

   *x* < *y*

has type ``bool`` (where *Type* is not the same as ``bool`` ).
If one executes the following code

| |tab| ``if`` ( *x* < *y*  )
| |tab| |tab| *y* = ``cos`` ( *x* );
| |tab| ``else``
| |tab| |tab| *y* = ``sin`` ( *x* );

the choice above depends on the value of *x* and *y*
and the two choices result in a different *Type* operation sequence.
In this case, we say that the *Type* operation sequence depends
on *x* and *y* .

Independent
===========
Suppose that *i* and *n* are ``size_t`` objects,
and *x* [ *i* ] , *y* are *Type* objects,
where *Type* is different from ``size_t`` .
The *Type* sequence of operations corresponding to

| |tab| *y* = *Type* (0);
| |tab| ``for`` ( *i* = 0; *i* < *n* ; *i* ++)
| |tab| |tab| *y* += *x* [ *i* ];

does not depend on the value of *x* or *y* .
In this case, we say that the *Type* operation sequence
is independent of *y* and the elements of *x* .

Parameter
*********

Constant
========
An ``AD`` < *Base* > object *u* is a constant parameter if
its value does not depend on the value of
the :ref:`Independent-name` variable vector
or the :ref:`Independent@dynamic` parameter vector
for an :ref:`active tape<glossary@Tape@Active>` .
If *u* is a constant parameter,
:ref:`Constant(u)<con_dyn_var@Constant>` returns true,
:ref:`Parameter(u)<con_dyn_var@Parameter>` returns true,
:ref:`Dynamic(u)<con_dyn_var@Dynamic>` returns false, and
:ref:`Variable(u)<con_dyn_var@Variable>` returns false.

Dynamic
=======
An ``AD`` < *Base* > object *u* is a dynamic parameter if
its value does not depend on the value of
the :ref:`Independent-name` variable vector, but its value does depend
on the :ref:`Independent@dynamic` parameter vector,
for an :ref:`active tape<glossary@Tape@Active>` .
If *u* is a dynamic parameter, the function
:ref:`Dynamic(u)<con_dyn_var@Dynamic>` returns true
:ref:`Parameter(u)<con_dyn_var@Parameter>` returns true,
:ref:`Constant(u)<con_dyn_var@Constant>` returns false, and
:ref:`Variable(u)<con_dyn_var@Variable>` returns false.

Row-major Representation
************************
A :ref:`SimpleVector-name` *v* is a row-major representation of a matrix
:math:`M \in \B{R}^{m \times n}` if *v* . ``size`` () == *m* * *n* and
for :math:`i = 0 , \ldots , m-1`, :math:`j = 0 , \ldots , n-1`

.. math::

   M_{i,j} = v[ i \times n + j ]

Sparsity Pattern
****************
Suppose that :math:`A \in \B{R}^{m \times n}` is a sparse matrix.
CppAD has several ways to specify the elements of :math:`A`
that are possible non-zero.

Row and Column Index Vectors
============================
A pair of non-negative integer vectors :math:`r`, :math:`c`
are a sparsity pattern for :math:`A`
if for every non-zero element :math:`A_{i,j}`,
there is a :math:`k` such that :math:`i = r_k` and :math:`j = c_k`.
Furthermore, for every :math:`\ell \neq k`,
either :math:`r_\ell \neq r_k` or :math:`c_\ell \neq c_k`.

Boolean Vector
==============
A boolean vector :math:`b`, of length :math:`m \times n`,
is a sparsity pattern for :math:`A`
if for every non-zero element :math:`A_{i,j}`,
:math:`b_{i \times n + j}` is true.

Vector of Sets
==============
A vector of sets :math:`s` of positive integers, of length :math:`m`,
is a sparsity pattern for :math:`A`
if for every non-zero element :math:`A_{i,j}`, :math:`j \in s_i`.

Tape
****

Active
======
A new tape is created and becomes active
after each call of the form (see :ref:`Independent-name` )

   ``Independent`` ( *x* )

All operations that depend on the elements of *x* are
recorded on this active tape.

Inactive
========
The :ref:`operation sequence<glossary@Operation@Sequence>`
stored in a tape can be transferred to a function object using the syntax

| |tab| ``ADFun`` < *Base* > *f* ( *x* , *y* )
| |tab| *f* . ``Dependent`` ( *x* , *y* )

see :ref:`fun_construct-name` .
After such a transfer, the tape becomes inactive.
The tape becomes inactive, without storing the operation sequence,
after a call to :ref:`abort_recording-name` .

Independent Variable
====================
While the tape is active, we refer to the elements of *x*
as the independent variables for the tape.
When the tape becomes inactive,
the corresponding objects become
:ref:`constants<glossary@Parameter@Constant>` .

Variables
=========
While the tape is active, we use the term variables for any scalar
whose value depends on the independent variables for the tape.
When the tape becomes inactive,
the corresponding objects become
:ref:`constants<glossary@Parameter@Constant>` .

Taylor Coefficient
******************
Suppose :math:`X : \B{R} \rightarrow \B{R}^n` is a
is :math:`p` times continuously differentiable function
in some neighborhood of zero.
For :math:`k = 0 , \ldots , p`,
we use the column vector :math:`x^{(k)} \in \B{R}^n` for the *k*-th order
Taylor coefficient corresponding to :math:`X`
which is defined by

.. math::

   x^{(k)} = \frac{1}{k !} \Dpow{k}{t} X(0)

It follows that

.. math::

   X(t) = x^{(0)} + x^{(1)} t + \cdots + x^{(p)} t^p  + R(t)

where the remainder :math:`R(t)` divided by :math:`t^p`
converges to zero and :math:`t` goes to zero.

Variable
********
An ``AD`` < *Base* > object *u* is a variable if
its value depends on an independent variable vector for
a currently :ref:`active tape<glossary@Tape@Active>` .
If *u* is a variable,
:ref:`Variable(u)<con_dyn_var@Variable>` returns true,
:ref:`Constant(u)<con_dyn_var@Constant>` returns false,
:ref:`Dynamic(u)<con_dyn_var@Dynamic>` returns false, and
:ref:`Parameter(u)<con_dyn_var@Parameter>` returns false.
For example,
directly after the code sequence

| |tab| ``Independent`` ( *x* );
| |tab| ``AD<double>`` *u* = *x* [0];

the ``AD<double>`` object *u* is currently a variable.
Directly after the code sequence

| |tab| ``Independent`` ( *x* );
| |tab| ``AD<double>`` *u* = *x* [0];
| |tab| *u*  = 5;

*u*  is currently a
:ref:`glossary@Parameter@Constant` parameter,
not a dynamic parameter or a variable.

Note that we often drop the word currently and
just refer to an ``AD`` < *Base* > object as a variable
or parameter.

{xrst_end glossary}