File: qp_interior.hpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (627 lines) | stat: -rw-r--r-- 17,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# ifndef CPPAD_EXAMPLE_ABS_NORMAL_QP_INTERIOR_HPP
# define CPPAD_EXAMPLE_ABS_NORMAL_QP_INTERIOR_HPP
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin qp_interior}
{xrst_spell
   maxitr
   rl
   sout
   xin
   xout
   yout
}

Solve a Quadratic Program Using Interior Point Method
#####################################################

Syntax
******
| *ok* = ``qp_interior`` (
| *level* , *c* , *C* , *g* , *G* , *epsilon* , *maxitr* , *xin* , *xout* , *yout* , *sout*
| )

Prototype
*********
{xrst_literal
   // BEGIN PROTOTYPE
   // END PROTOTYPE
}

Source
******
This following is a link to the source code for this example:
:ref:`qp_interior.hpp-name` .

Purpose
*******
This routine could be used to create a version of :ref:`abs_min_linear-name`
that solved Quadratic programs (instead of linear programs).

Problem
*******
We are given
:math:`C \in \B{R}^{m \times n}`,
:math:`c \in \B{R}^m`,
:math:`G \in \B{R}^{n \times n}`,
:math:`g \in \B{R}^n`,
where :math:`G` is positive semi-definite
and :math:`G + C^T C` is positive definite.
This routine solves the problem

.. math::

   \begin{array}{rl}
   \R{minimize} &
   \frac{1}{2} x^T G x + g^T x \; \R{w.r.t} \; x \in \B{R}^n
   \\
   \R{subject \; to} &
   C x + c \leq 0
   \end{array}

Vector
******
The type *Vector* is a
simple vector with elements of type ``double`` .

level
*****
This value is zero or one.
If *level*  == 0 ,
no tracing is printed.
If *level*  == 1 ,
a trace of the ``qp_interior`` optimization is printed.

Lower c
*******
This is the vector :math:`c` in the problem.

Upper C
*******
This is a :ref:`row-major<glossary@Row-major Representation>`
of the matrix :math:`C` in the problem.

Lower g
*******
This is the vector :math:`g` in the problem.

Upper G
*******
This is a :ref:`row-major<glossary@Row-major Representation>`
of the matrix :math:`G` in the problem.

epsilon
*******
This argument is the convergence criteria;
see :ref:`qp_interior@KKT Conditions` below.
It must be greater than zero.

maxitr
******
This is the maximum number of newton iterations to try before giving up
on convergence.

xin
***
This argument has size *n* and is the initial point for the algorithm.
It must strictly satisfy the constraints; i.e.,
:math:`C x - c < 0`  for *x* = *xin* .

xout
****
This argument has size is *n* and
the input value of its elements does no matter.
Upon return it is the primal variables corresponding to the problem solution.

yout
****
This argument has size is *m* and
the input value of its elements does no matter.
Upon return it the components of *yout* are all positive
and it is the dual variables corresponding to the program solution.

sout
****
This argument has size is *m* and
the input value of its elements does no matter.
Upon return it the components of *sout* are all positive
and it is the slack variables corresponding to the program solution.

ok
**
If the return value *ok* is true, convergence is obtained; i.e.,

.. math::

   | F_0 (xout , yout, sout) |_\infty \leq epsilon

where :math:`| v |_\infty` is the maximum absolute element
for the vector :math:`v` and :math:`F_\mu (x, y, s)` is defined below.

KKT Conditions
**************
Give a vector :math:`v \in \B{R}^m` we define
:math:`D(v) \in \B{R}^{m \times m}` as the corresponding diagonal matrix.
We also define :math:`1_m \in \B{R}^m` as the vector of ones.
We define
:math:`F_\mu : \B{R}^{n + m + m } \rightarrow \B{R}^{n + m + m}`
by

.. math::

   F_\mu ( x , y , s )
   =
   \left(
   \begin{array}{c}
   g + G x + y^T C             \\
   C x + c + s                           \\
   D(s) D(y) 1_m - \mu 1_m
   \end{array}
   \right)

The KKT conditions for a solution of this problem is
:math:`0 \leq y`,
:math:`0 \leq s`, and
:math:`F_0 (x , y, s) = 0`.

Newton Step
***********
The derivative of :math:`F_\mu` is given by

.. math::

   F_\mu^{(1)} (x, y, s)  =
   \left( \begin{array}{ccc}
   G       & C^T  & 0_{n,m} \\
   C       & 0    & I_{m,m} \\
   0_{m,m} & D(s) && D(y)
   \end{array} \right)

The Newton step solves the following equation for
:math:`\Delta x`, :math:`\Delta y`, and :math:`\Delta z`

.. math::

   F_\mu^{(1)} (x, y, s)
   \left( \begin{array}{c} \Delta x \\ \Delta y \\ \Delta s \end{array} \right)
   =
   - F_\mu (x, y, s)

To simplify notation, we define

.. math::
   :nowrap:

   \begin{eqnarray}
   r_x (x, y, s) & = & g + G x + y^T C \\
   r_y (x, y, s) & = & C x + c + s          \\
   r_s (x, y, s) & = & D(s) D(y) 1_m - \mu 1_m
   \end{eqnarray}

It follows that

.. math::

   \left( \begin{array}{ccc}
   G       & C^T  & 0_{n,m} \\
   C       & 0    & I_{m,m} \\
   0_{m,m} & D(s) && D(y)
   \end{array} \right)
   \left( \begin{array}{c} \Delta x \\ \Delta y \\ \Delta s \end{array} \right)
   =
   -
   \left( \begin{array}{c}
      r_x (x, y, s) \\
      r_y (x, y, s) \\
      r_s (x, y, s)
   \end{array} \right)

Elementary Row Reduction
========================
Subtracting :math:`D(y)` times the second row from the third row
we obtain:

.. math::

   \left( \begin{array}{ccc}
   G        & C^T  & 0_{n,m} \\
   C        & 0    & I_{m,m} \\
   - D(y) C & D(s) & 0_{m,m}
   \end{array} \right)
   \left( \begin{array}{c} \Delta x \\ \Delta y \\ \Delta s \end{array} \right)
   =
   -
   \left( \begin{array}{c}
      r_x (x, y, s) \\
      r_y (x, y, s) \\
      r_s (x, y, s) - D(y) r_y(x, y, s)
   \end{array} \right)

Multiplying the third row by :math:`D(s)^{-1}` we obtain:

.. math::

   \left( \begin{array}{ccc}
   G          & C^T     & 0_{n,m} \\
   C          & 0       & I_{m,m} \\
   - D(y/s) C & I_{m,m} & 0_{m,m}
   \end{array} \right)
   \left( \begin{array}{c} \Delta x \\ \Delta y \\ \Delta s \end{array} \right)
   =
   -
   \left( \begin{array}{c}
      r_x (x, y, s) \\
      r_y (x, y, s) \\
      D(s)^{-1} r_s (x, y, s) - D(y/s) r_y(x, y, s)
   \end{array} \right)

where :math:`y/s` is the vector in :math:`\B{R}^m` defined by
:math:`(y/s)_i = y_i / s_i`.
Subtracting :math:`C^T` times the third row from the first row we obtain:

.. math::

   \left( \begin{array}{ccc}
   G + C^T D(y/s) C & 0_{n,m} & 0_{n,m} \\
   C                & 0       & I_{m,m} \\
   - D(y/s) C       & I_{m,m} & 0_{m,m}
   \end{array} \right)
   \left( \begin{array}{c} \Delta x \\ \Delta y \\ \Delta s \end{array} \right)
   =
   -
   \left( \begin{array}{c}
      r_x (x, y, s)
         - C^T D(s)^{-1} \left[ r_s (x, y, s) - D(y) r_y(x, y, s) \right] \\
      r_y (x, y, s) \\
      D(s)^{-1} r_s (x, y, s) - D(y/s) r_y(x, y, s)
   \end{array} \right)

Solution
********
It follows that :math:`G + C^T D(y/s) C` is invertible and
we can determine :math:`\Delta x` by solving the equation

.. math::

   [ G + C^T D(y/s) C ] \Delta x
   =
   C^T D(s)^{-1} \left[ r_s (x, y, s) - D(y) r_y(x, y, s) \right] - r_x (x, y, s)

Given :math:`\Delta x` we have that

.. math::

   \Delta s = - r_y (x, y, s) - C \Delta x

.. math::

   \Delta y =
   D(s)^{-1}[ D(y) r_y(x, y, s) - r_s (x, y, s) + D(y) C \Delta x ]

{xrst_toc_hidden
   example/abs_normal/qp_interior.cpp
   example/abs_normal/qp_interior.xrst
}
Example
*******
The file :ref:`qp_interior.cpp-name` contains an example and test of
``qp_interior`` .

{xrst_end qp_interior}
-----------------------------------------------------------------------------
*/
# include <cmath>
# include <cppad/utility/lu_solve.hpp>
# include "abs_print_mat.hpp"

// BEGIN C++
namespace {
   // ------------------------------------------------------------------------
   template <class Vector>
   double qp_interior_max_abs(const Vector& v)
   {  double max_abs = 0.0;
      for(size_t j = 0; j < size_t(v.size()); j++)
         max_abs = std::max( max_abs, std::fabs(v[j]) );
      return max_abs;
   }
   // ------------------------------------------------------------------------
   template <class Vector>
   void qp_interior_split(
      const Vector& v, Vector& v_x, Vector& v_y, Vector& v_s
   )
   {  size_t n = v_x.size();
      size_t m = v_y.size();
      CPPAD_ASSERT_UNKNOWN( size_t(v_s.size()) == m );
      CPPAD_ASSERT_UNKNOWN( size_t(v.size()) == n + m + m );
      for(size_t i = 0; i < n; i++)
         v_x[i] = v[i];
      for(size_t i = 0; i < m; i++)
      {  v_y[i] = v[n + i];
         v_s[i] = v[n + m + i];
      }
      return;
   }
   // ------------------------------------------------------------------------
   template <class Vector>
   void qp_interior_join(
      Vector& v, const Vector& v_x, const Vector& v_y, const Vector& v_s
   )
   {  size_t n = v_x.size();
      size_t m = v_y.size();
      CPPAD_ASSERT_UNKNOWN( size_t(v_s.size()) == m );
      CPPAD_ASSERT_UNKNOWN( size_t(v.size()) == n + m + m );
      for(size_t i = 0; i < n; i++)
         v[i] = v_x[i];
      for(size_t i = 0; i < m; i++)
         v[n + i] = v_y[i];
      for(size_t i = 0; i < m; i++)
         v[n + m + i] = v_s[i];
      return;
   }
   // ------------------------------------------------------------------------
   template <class Vector>
   Vector qp_interior_F_0(
      const Vector& c       ,
      const Vector& C       ,
      const Vector& g       ,
      const Vector& G       ,
      const Vector& x       ,
      const Vector& y       ,
      const Vector& s       )
   {  size_t n = g.size();
      size_t m = c.size();
      // compute r_x(x, y, s) = g + G x + y^T C
      Vector r_x(n);
      for(size_t j = 0; j < n; j++)
      {  r_x[j] = g[j];
         for(size_t i = 0; i < n; i++)
            r_x[j] += G[j * n + i] * x[i];
         for(size_t i = 0; i < m; i++)
            r_x[j] += y[i] * C[i * n + j];
      }
      // compute r_y(x, y, s) = C x + c + s
      Vector r_y(m);
      for(size_t i = 0; i < m; i++)
      {  r_y[i] = c[i] + s[i];
         for(size_t j = 0; j < n; j++)
            r_y[i] += C[i * n + j] * x[j];
      }
      // compute r_s(x, y, s) = D(s) * D(y) * 1_m - mu * 1_m
      // where mu = 0
      Vector r_s(m);
      for(size_t i = 0; i < m; i++)
         r_s[i] = s[i] * y[i];
      //
      // combine into one vector
      Vector F_0(n + m + m);
      qp_interior_join(F_0, r_x, r_y, r_s);
      //
      return F_0;
   }
}
//
namespace CppAD { // BEGIN_CPPAD_NAMESPACE

// BEGIN PROTOTYPE
template <class Vector>
bool qp_interior(
   size_t        level   ,
   const Vector& c       ,
   const Vector& C       ,
   const Vector& g       ,
   const Vector& G       ,
   double        epsilon ,
   size_t        maxitr  ,
   const Vector& xin     ,
   Vector&       xout    ,
   Vector&       yout    ,
   Vector&       sout    )
// END PROTOTYPE
{  size_t m = c.size();
   size_t n = g.size();
   CPPAD_ASSERT_KNOWN(
      level <= 1,
      "qp_interior: level is greater than one"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(C.size()) == m * n,
      "qp_interior: size of C is not m * n"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(G.size()) == n * n,
      "qp_interior: size of G is not n * n"
   );
   if( level > 0 )
   {  std::cout << "start qp_interior\n";
      CppAD::abs_print_mat("c", m, 1, c);
      CppAD::abs_print_mat("C", m, n, C);
      CppAD::abs_print_mat("g", n, 1, g);
      CppAD::abs_print_mat("G", n, n, G);
      CppAD::abs_print_mat("xin", n, 1, xin);
   }
   //
   // compute the maximum absolute element of the problem vectors and matrices
   double max_element = 0.0;
   for(size_t i = 0; i < size_t(C.size()); i++)
      max_element = std::max(max_element , std::fabs(C[i]) );
   for(size_t i = 0; i < size_t(c.size()); i++)
      max_element = std::max(max_element , std::fabs(c[i]) );
   for(size_t i = 0; i < size_t(G.size()); i++)
      max_element = std::max(max_element , std::fabs(G[i]) );
   for(size_t i = 0; i < size_t(g.size()); i++)
      max_element = std::max(max_element , std::fabs(g[i]) );
   //
   double mu = 1e-1 * max_element;
   //
   if( max_element == 0.0 )
   {  if( level > 0 )
         std::cout << "end qp_interior: line_search failed\n";
      return false;
   }
   //
   // initialize x, y, s
   xout = xin;
   for(size_t i = 0; i < m; i++)
   {  double sum = c[i];
      for(size_t j = 0; j < n; j++)
         sum += C[ i * n + j ] * xout[j];
      if( sum > 0.0 )
      {  if( level > 0 ) std::cout <<
            "end qp_interior: xin is not in interior of feasible set\n";
         return false;
      }
      //
      sout[i] = std::sqrt(mu);
      yout[i] = std::sqrt(mu);
   }
   // ----------------------------------------------------------------------
   // initial F_0(xout, yout, sout)
   Vector F_0       = qp_interior_F_0(c, C, g, G, xout, yout, sout);
   double F_max_abs = qp_interior_max_abs( F_0 );
   for(size_t itr = 0; itr <= maxitr; itr++)
   {
      // check for convergence
      if( F_max_abs <= epsilon )
      {  if( level > 0 )
            std::cout << "end qp_interior: ok = true\n";
         return true;
      }
      if( itr == maxitr )
      {  if( level > 0 ) std::cout <<
            "end qp_interior: max # iterations without convergence\n";
         return false;
      }
      //
      // compute F_mu(xout, yout, sout)
      Vector F_mu  = F_0;
      for(size_t i = 0; i < m; i++)
         F_mu[n + m + i] -= mu;
      //
      // r_x, r_y, r_s (xout, yout, sout)
      Vector r_x(n), r_y(m), r_s(m);
      qp_interior_split(F_mu, r_x, r_y, r_s);
      //
      // tmp_m = D(s)^{-1} * [ r_s - D(y) r_y ]
      Vector tmp_m(m);
      for(size_t i = 0; i < m; i++)
         tmp_m[i]  = ( r_s[i] - yout[i] * r_y[i] ) / sout[i];
      //
      // right_x = C^T * D(s)^{-1} * [ r_s - D(y) r_y ] - r_x
      Vector right_x(n);
      for(size_t j = 0; j < n; j++)
      {  right_x[j] = 0.0;
         for(size_t i = 0; i < m; i++)
            right_x[j] += C[ i * n + j ] * tmp_m[i];
         right_x[j] -= r_x[j];
      }
      //
      // Left_x = G + C^T * D(y / s) * C
      Vector Left_x = G;
      for(size_t i = 0; i < n; i++)
      {  for(size_t j = 0; j < n; j++)
         {  for(size_t k = 0; k < m; k++)
            {  double y_s = yout[k] / sout[k];
               Left_x[ i * n + j] += C[k * n + j] * y_s * C[k * n + i];
            }
         }
      }
      // delta_x
      Vector delta_x(n);
      double logdet;
      LuSolve(n, 1, Left_x, right_x, delta_x, logdet);
      //
      // C_delta_x = C * delta_x
      Vector C_delta_x(m);
      for(size_t i = 0; i < m; i++)
      {  C_delta_x[i] = 0.0;
         for(size_t j = 0; j < n; j++)
            C_delta_x[i] += C[ i * n + j ] * delta_x[j];
      }
      //
      // delta_y = D(s)^-1 * [D(y) * r_y - r_s + D(y) * C * delta_x]
      Vector delta_y(m);
      for(size_t i = 0; i < m; i++)
      {  delta_y[i] = yout[i] * r_y[i] - r_s[i] + yout[i] * C_delta_x[i];
         delta_y[i] /= sout[i];
      }
      // delta_s = - r_y - C * delta_x
      Vector delta_s(m);
      for(size_t i = 0; i < m; i++)
         delta_s[i] = - r_y[i] - C_delta_x[i];
      //
      // delta_xys
      Vector delta_xys(n + m + m);
      qp_interior_join(delta_xys, delta_x, delta_y, delta_s);
      // -------------------------------------------------------------------
      //
      // The initial derivative in direction  Delta_xys is equal to
      // the negative of the norm square of F_mu
      //
      // line search parameter lam
      Vector x(n), y(m), s(m);
      double  lam = 2.0;
      bool lam_ok = false;
      while( ! lam_ok && lam > 1e-5 )
      {  lam = lam / 2.0;
         for(size_t j = 0; j < n; j++)
            x[j] = xout[j] + lam * delta_xys[j];
         lam_ok = true;
         for(size_t i = 0; i < m; i++)
         {  y[i] = yout[i] + lam * delta_xys[n + i];
            s[i] = sout[i] + lam * delta_xys[n + m + i];
            lam_ok &= s[i] > 0.0 && y[i] > 0.0;
         }
         if( lam_ok )
         {  Vector F_mu_tmp = qp_interior_F_0(c, C, g, G, x, y, s);
            for(size_t i = 0; i < m; i++)
               F_mu_tmp[n + m + i] -= mu;
            // avoid cancellation roundoff in difference of norm squared
            // |v + dv|^2         = v^T * v + 2 * v^T * dv + dv^T * dv
            // |v + dv|^2 - |v|^2 =           2 * v^T * dv + dv^T * dv
            double F_norm_sq    = 0.0;
            double diff_norm_sq = 0.0;
            for(size_t i = 0; i < n + m + m; i++)
            {  double dv     = F_mu_tmp[i] - F_mu[i];
               F_norm_sq    += F_mu[i] * F_mu[i];
               diff_norm_sq += 2.0 * F_mu[i] * dv + dv * dv;
            }
            lam_ok &= diff_norm_sq < - lam * F_norm_sq / 4.0;
         }
      }
      if( ! lam_ok )
      {  if( level > 0 )
            std::cout << "end qp_interior: line search failed\n";
         return false;
      }
      //
      // update current solution
      xout = x;
      yout = y;
      sout = s;
      //
      // updage F_0
      F_0       = qp_interior_F_0(c, C, g, G, xout, yout, sout);
      F_max_abs = qp_interior_max_abs( F_0 );
      //
      // update mu
      if( F_max_abs <= 1e1 *  mu )
         mu = mu / 1e2;
      if( level > 0 )
      {  std::cout << "itr = " << itr
            << ", mu = " << mu
            << ", lam = " << lam
            << ", F_max_abs = " << F_max_abs << "\n";
         abs_print_mat("xout", 1, n, xout);
      }
   }
   if( level > 0 )
      std::cout << "end qp_interior: program error\n";
   return false;
}
} // END_CPPAD_NAMESPACE
// END C++

# endif