1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
# ifndef CPPAD_EXAMPLE_ABS_NORMAL_SIMPLEX_METHOD_HPP
# define CPPAD_EXAMPLE_ABS_NORMAL_SIMPLEX_METHOD_HPP
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin simplex_method}
{xrst_spell
maxitr
rl
xout
}
abs_normal: Solve a Linear Program Using Simplex Method
#######################################################
Syntax
******
| *ok* = ``simplex_method`` ( *level* , *b* , *A* , *c* , *maxitr* , *xout* )
Prototype
*********
{xrst_literal
// BEGIN PROTOTYPE
// END PROTOTYPE
}
Source
******
This following is a link to the source code for this example:
:ref:`simplex_method.hpp-name` .
Problem
*******
We are given
:math:`A \in \B{R}^{m \times n}`,
:math:`b \in \B{R}^m`,
:math:`c \in \B{R}^n`.
This routine solves the problem
.. math::
\begin{array}{rl}
\R{minimize} &
g^T x \; \R{w.r.t} \; x \in \B{R}_+^n
\\
\R{subject \; to} & A x + b \leq 0
\end{array}
Vector
******
The type *Vector* is a
simple vector with elements of type ``double`` .
level
*****
This value is less than or equal two.
If *level* == 0 ,
no tracing is printed.
If *level* >= 1 ,
a trace :math:`x` and the corresponding objective :math:`z`
is printed at each iteration.
If *level* == 2 ,
a trace of the simplex Tableau is printed at each iteration.
A
*
This is a :ref:`row-major<glossary@Row-major Representation>` representation
of the matrix :math:`A` in the problem.
b
*
This is the vector :math:`b` in the problem.
c
*
This is the vector :math:`c` in the problem.
maxitr
******
This is the maximum number of simplex iterations to try before giving up
on convergence.
xout
****
This argument has size is *n* and
the input value of its elements does no matter.
Upon return it is the primal variables corresponding to the problem solution.
ok
**
If the return value *ok* is true, a solution has been found.
{xrst_toc_hidden
example/abs_normal/simplex_method.cpp
example/abs_normal/simplex_method.xrst
}
Example
*******
The file :ref:`simplex_method.cpp-name` contains an example and test of
``simplex_method`` .
{xrst_end simplex_method}
-----------------------------------------------------------------------------
*/
# include <cmath>
# include <cppad/utility/error_handler.hpp>
# include "abs_print_mat.hpp"
// BEGIN C++
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
// BEGIN PROTOTYPE
template <class Vector>
bool simplex_method(
size_t level ,
const Vector& A ,
const Vector& b ,
const Vector& c ,
size_t maxitr ,
Vector& xout )
// END PROTOTYPE
{ // number of equations
size_t ne = b.size();
// number of x variables
size_t nx = c.size();
CPPAD_ASSERT_UNKNOWN( size_t(A.size()) == ne * nx );
CPPAD_ASSERT_UNKNOWN( level <= 2 );
//
if( level > 0 )
{ std::cout << "start simplex_method\n";
CppAD::abs_print_mat("A", ne, nx, A);
CppAD::abs_print_mat("b", ne, 1, b);
CppAD::abs_print_mat("c", nx, 1, c);
}
//
// variables (columns) in the Tableau:
// x: the original primary variables with size n
// s: slack variables, one for each equation
// a: auxiliary variables, one for each negative right hand size
// r: right hand size for equations
//
// Determine number of auxiliary variables
size_t na = 0;
for(size_t i = 0; i < ne; i++)
{ if( b[i] > 0.0 )
++na;
}
// size of columns in the Tableau
size_t nc = nx + ne + na + 1;
// number of rows in Tableau, the equations plust two objectives
size_t nr = ne + 2;
// Initialize Tableau as zero
Vector T(nr * nc);
for(size_t i = 0; i < nr * nc; i++)
T[i] = 0.0;
// initialize basic variable flag as false
CppAD::vector<size_t> basic(nc);
for(size_t j = 0; j < nc; j++)
basic[j] = false;
// For i = 0 , ... , m-1, place the Equations
// sum_j A_{i,j} * x_j + b_i <= 0 in Tableau
na = 0; // use as index of next auxiliary variable
for(size_t i = 0; i < ne; i++)
{ if( b[i] > 0.0)
{ // convert to - sum_j A_{i,j} x_j - b_i >= 0
for(size_t j = 0; j < nx; j++)
T[i * nc + j] = - A[i * nx + j];
// slack variable has negative coefficient
T[i * nc + (nx + i)] = -1.0;
// auxiliary variable is basic for this constraint
T[i * nc + (nx + ne + na)] = 1.0;
basic[nx + ne + na] = true;
// right hand side
T[i * nc + (nc - 1)] = b[i];
//
++na;
}
else
{ // sum_j A_{i,j} x_j + b_i <= 0
for(size_t j = 0; j < nx; j++)
T[i * nc + j] = A[i * nx + j];
// slack variable is also basic
T[ i * nc + (nx + i) ] = 1.0;
basic[nx + i] = true;
// right hand side for equations
T[ i * nc + (nc - 1) ] = - b[i];
}
}
// na is back to its original value
CPPAD_ASSERT_UNKNOWN( nc == nx + ne + na + 1 );
//
// place the equation objective equation in Tablueau
// row ne corresponds to the equation z - sum_j c_j x_j = 0
// column index for z is nx + ne + na
for(size_t j = 0; j < nx; j++)
T[ne * nc + j] = - c[j];
//
// row ne+1 corresponds to the equation w - a_0 - ... - a_{na-1} = 0
// column index for w is nx + ne + na +1
for(size_t j = 0; j < na; j++)
T[(ne + 1) * nc + (nx + ne + j)] = -1.0;
//
// fix auxiliary objective so coefficients in w
// for auxiliary variables are zero
for(size_t k = 0; k < na; k++)
{ size_t ja = nx + ne + k;
size_t ia = ne;
for(size_t i = 0; i < ne; i++)
{ if( T[i * nc + ja] != 0.0 )
{ CPPAD_ASSERT_UNKNOWN( T[i * nc + ja] == 1.0 );
CPPAD_ASSERT_UNKNOWN( T[(ne + 1) * nc + ja] == -1.0 )
CPPAD_ASSERT_UNKNOWN( ia == ne );
ia = i;
}
}
CPPAD_ASSERT_UNKNOWN( ia < ne );
for(size_t j = 0; j < nc; j++)
T[(ne + 1) * nc + j] += T[ia * nc + j];
// The result in column ja is zero, avoid roundoff
T[(ne + 1) * nc + ja] = 0.0;
}
//
// index of current objective
size_t iobj = ne; // original objective z
if( na > 0 )
iobj = ne + 1; // auxiliary objective w
//
// simplex iterations
for(size_t itr = 0; itr < maxitr; itr++)
{ // current value for xout
for(size_t j = 0; j < nx; j++)
{ xout[j] = 0.0;
if( basic[j] )
{ // determine which row of column j is non-zero
xout[j] = std::numeric_limits<double>::quiet_NaN();
for(size_t i = 0; i < ne; i++)
{ double T_ij = T[i * nc + j];
CPPAD_ASSERT_UNKNOWN( T_ij == 0.0 || T_ij == 1.0 );
if( T_ij == 1.0 )
{ // corresponding value in right hand side
xout[j] = T[ i * nc + (nc-1) ];
}
}
}
}
if( level > 1 )
CppAD::abs_print_mat("T", nr, nc, T);
if( level > 0 )
{ CppAD::abs_print_mat("x", nx, 1, xout);
std::cout << "itr = " << itr;
if( iobj > ne )
std::cout << ", auxiliary objective w = ";
else
std::cout << ", objective z = ";
std::cout << T[iobj * nc + (nc - 1)] << "\n";
}
//
// number of variables depends on objective
size_t nv = nx + ne; // (x, s)
if( iobj == ne + 1 )
{ // check if we have solved the auxiliary problem
bool done = true;
for(size_t k = 0; k < na; k++)
if( basic[nx + ne + k] )
done = false;
if( done )
{ // switch to optimizing the original objective
iobj = ne;
}
else
nv = nx + ne + na; // (x, s, a)
}
//
// determine variable with maximum coefficient in objective row
double cmax = 0.0;
size_t jmax = nv;
for(size_t j = 0; j < nv; j++)
{ if( T[iobj * nc + j] > cmax )
{ CPPAD_ASSERT_UNKNOWN( ! basic[j] );
cmax = T[ iobj * nc + j];
jmax = j;
}
}
// check for solution
if( jmax == nv )
{ if( iobj == ne )
{ if( level > 0 )
std::cout << "end simplex_method\n";
return true;
}
if( level > 0 )
std::cout << "end_simples_method: no feasible solution\n";
return false;
}
//
// We will increase the j-th variable.
// Determine which row will be the pivot row.
double rmin = std::numeric_limits<double>::infinity();
size_t imin = ne;
for(size_t i = 0; i < ne; i++)
{ if( T[i * nc + jmax] > 0.0 )
{ double r = T[i * nc + (nc-1) ] / T[i * nc + jmax];
if( r < rmin )
{ rmin = r;
imin = i;
}
}
}
if( imin == ne )
{ // not auxiliary objective
CPPAD_ASSERT_UNKNOWN( iobj == ne );
if( level > 0 ) std::cout
<< "end simplex_method: objective is unbounded below\n";
return false;
}
double pivot = T[imin * nc + jmax];
//
// Which variable is changing from basic to non-basic.
// Initialize as not yet determined.
size_t basic2not = nc;
//
// Divide row imin by pivot element
for(size_t j = 0; j < nc; j++)
{ if( basic[j] && T[imin * nc + j] == 1.0 )
{ CPPAD_ASSERT_UNKNOWN( basic2not == nc );
basic2not = j;
}
T[imin * nc + j] /= pivot;
}
// The result in column jmax is one, avoid roundoff
T[imin * nc + jmax ] = 1.0;
//
// Check that we found the variable going from basic to non-basic
CPPAD_ASSERT_UNKNOWN( basic2not < nv && basic2not != jmax );
//
// convert variable for column jmax to basic
// and for column basic2not to non-basic
for(size_t i = 0; i < nr; i++) if( i != imin )
{ double r = T[i * nc + jmax ] / T[imin * nc + jmax];
// row_i = row_i - r * row_imin
for(size_t j = 0; j < nc; j++)
T[i * nc + j] -= r * T[imin * nc + j];
// The result in column jmax is zero, avoid roundoff
T[i * nc + jmax] = 0.0;
}
// update flag for basic variables
basic[ basic2not ] = false;
basic[ jmax ] = true;
}
if( level > 0 ) std::cout
<< "end simplex_method: maximum # iterations without solution\n";
return false;
}
} // END_CPPAD_NAMESPACE
// END C++
# endif
|