1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_bilinear.cpp}
Bilinear Interpolation Atomic Function: Example and Test
########################################################
See Also
********
:ref:`interp_onetape.cpp-name` .
Define Atomic Function
**********************
{xrst_literal
// BEGIN_DEFINE_ATOMIC_FUNCTION
// END_DEFINE_ATOMIC_FUNCTION
}
Use Atomic Function
*******************
{xrst_literal
// BEGIN_USE_ATOMIC_FUNCTION
// END_USE_ATOMIC_FUNCTION
}
{xrst_end atomic_four_bilinear.cpp}
*/
# include <cppad/cppad.hpp> // CppAD include file
// BEGIN_DEFINE_ATOMIC_FUNCTION
// empty namespace
namespace {
// atomic_bilinear
class atomic_bilinear : public CppAD::atomic_four<double> {
private:
// u_grid_, v_grid_; y_grid_
CppAD::vector<double>& u_grid_;
CppAD::vector<double>& v_grid_;
CppAD::vector<double>& y_grid_;
//
// u_index_, v_index
size_t u_index_;
size_t v_index_;
//
// set_index
void set_index(double u, double v)
{ //
// u_index_
while( u < u_grid_[u_index_] && u_index_ > 0 )
--u_index_;
while( u > u_grid_[u_index_+1] && u_index_ < u_grid_.size() - 2 )
++u_index_;
//
// v_index_
while( v < v_grid_[v_index_] && v_index_ > 0 )
--v_index_;
while( v > v_grid_[v_index_+1] && v_index_ < v_grid_.size() - 2 )
++v_index_;
}
public:
// can use const char* name when calling this constructor
atomic_bilinear(
const std::string& name ,
CppAD::vector<double>& u_grid ,
CppAD::vector<double>& v_grid ,
CppAD::vector<double>& y_grid ) :
CppAD::atomic_four<double>(name) , // inform base class of name
u_grid_(u_grid) ,
v_grid_(v_grid) ,
y_grid_(y_grid) ,
u_index_(0) ,
v_index_(0)
{ assert( u_grid_.size() >= 2 );
assert( v_grid_.size() >= 2 );
assert( y_grid_.size() == u_grid_.size() * v_grid_.size() );
}
private:
// for_type
bool for_type(
size_t call_id ,
const CppAD::vector<CppAD::ad_type_enum>& type_x ,
CppAD::vector<CppAD::ad_type_enum>& type_y ) override
{
assert( call_id == 0 ); // default value
assert( type_x.size() == 2 ); // n
assert( type_y.size() == 1 ); // m
//
type_y[0] = std::max(type_x[0], type_x[1]);
return true;
}
// forward
bool forward(
size_t call_id ,
const CppAD::vector<bool>& select_y ,
size_t order_low ,
size_t order_up ,
const CppAD::vector<double>& taylor_x ,
CppAD::vector<double>& taylor_y ) override
{
// ok
bool ok = order_up <= 1;
if( ! ok )
return ok;
//
// q
size_t q = order_up + 1;
//
# ifndef NDEBUG
size_t n = taylor_x.size() / q;
size_t m = taylor_y.size() / q;
assert( call_id == 0 );
assert( n == 2 );
assert( m == 1 );
assert( m == select_y.size() );
# endif
// u, v
double u = taylor_x[0 * q + 0];
double v = taylor_x[1 * q + 0];
//
// u_index_, v_index_
set_index(u, v);
//
// u_0, u_1, v_0, v_1
double u_0 = u_grid_[ u_index_ + 0 ];
double u_1 = u_grid_[ u_index_ + 1 ];
double v_0 = v_grid_[ v_index_ + 0 ];
double v_1 = v_grid_[ v_index_ + 1 ];
//
// y_00, y_01, y_10, y_11
double y_00 = y_grid_[ (u_index_+0) * v_grid_.size() + v_index_+0 ];
double y_01 = y_grid_[ (u_index_+0) * v_grid_.size() + v_index_+1 ];
double y_10 = y_grid_[ (u_index_+1) * v_grid_.size() + v_index_+0 ];
double y_11 = y_grid_[ (u_index_+1) * v_grid_.size() + v_index_+1 ];
//
// taylor_y
// function value
if( order_low <= 0 )
{ double sum = 0.0;
sum += y_00 * (u_1 - u) * (v_1 - v);
sum += y_01 * (u_1 - u) * (v - v_0);
sum += y_10 * (u - u_0) * (v_1 - v);
sum += y_11 * (u - u_0) * (v - v_0);
taylor_y[0] = sum / ( (u_1 - u_0) * (v_1 - v_0) );
}
//
// taylor_y
// first order derivatives
if( order_low <= 1 && 1 <= order_up )
{ //
// du, dv
double du = taylor_x[0 * q + 1];
double dv = taylor_x[1 * q + 1];
double dsum = 0.0;
//
dsum -= y_00 * du * (v_1 - v);
dsum -= y_01 * du * (v - v_0);
dsum += y_10 * du * (v_1 - v);
dsum += y_11 * du * (v - v_0);
dsum -= y_00 * (u_1 - u) * dv;
dsum += y_01 * (u_1 - u) * dv;
dsum -= y_10 * (u - u_0) * dv;
dsum += y_11 * (u - u_0) * dv;
taylor_y[1] = dsum / ( (u_1 - u_0) * (v_1 - v_0) );
}
//
return ok;
}
};
}
// END_DEFINE_ATOMIC_FUNCTION
// BEGIN_USE_ATOMIC_FUNCTION
bool bilinear(void)
{ //
// ok, eps
bool ok = true;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// nu, u_grid
size_t nu = 4;
CppAD::vector<double> u_grid(nu);
for(size_t i = 0; i < nu; ++i)
u_grid[i] = double(i) * 2.0;
//
// nv, v_grid
size_t nv = 5;
CppAD::vector<double> v_grid(nv);
for(size_t j = 0; j < nv; ++j)
v_grid[j] = double(j) * 3.0;
//
// y_grid
CppAD::vector<double> y_grid( u_grid.size() * v_grid.size() );
for(size_t i = 0; i < nu; ++i)
{ for(size_t j = 0; j < nv; ++j)
{ double u = u_grid[i];
double v = v_grid[j];
y_grid[i * v_grid.size() + j] = u * u + v * v;
}
}
//
// afun
std::string name = "atomic_bilinear";
atomic_bilinear afun(name, u_grid, v_grid, y_grid);
//
// n, m
size_t n = 2;
size_t m = 1;
//
// ax
CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(n);
ax[0] = 0.0;
ax[1] = 0.0;
CppAD::Independent(ax);
//
// ay
// call atomic function and store result in ay
CPPAD_TESTVECTOR( CppAD::AD<double> ) ay(m);
afun(ax, ay);
//
// f
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
//
// y
CPPAD_TESTVECTOR( double ) x(n), y(m);
x[0] = 1.0;
x[1] = 3.5;
y = f.Forward(0, x);
//
// u_0, u_1
double u_0 = u_grid[0];
double u_1 = u_grid[1];
assert( u_0 < x[0] && x[0] < u_1 );
//
// v_0, v_1
double v_0 = v_grid[1];
double v_1 = v_grid[2];
assert( v_0 < x[1] && x[1] < v_1 );
//
// y_00, y_01, y_10, y_11
double y_00 = y_grid[ 0 * v_grid.size() + 1 ];
double y_01 = y_grid[ 0 * v_grid.size() + 2 ];
double y_10 = y_grid[ 1 * v_grid.size() + 1 ];
double y_11 = y_grid[ 1 * v_grid.size() + 2 ];
//
// check, ok
double sum = 0.0;
sum += y_00 * (u_1 - x[0]) * (v_1 - x[1]);
sum += y_01 * (u_1 - x[0]) * (x[1] - v_0);
sum += y_10 * (x[0] - u_0) * (v_1 - x[1]);
sum += y_11 * (x[0] - u_0) * (x[1] - v_0);
double check = sum / ( (u_1 - u_0) * (v_1 - v_0) );
ok &= CppAD::NearEqual(y[0] , check, eps, eps);
//
// dy
CPPAD_TESTVECTOR( double ) dx(n), dy(m);
dx[0] = 1.0;
dx[1] = 0.0;
dy = f.Forward(1, dx);
//
// check
sum = 0.0;
sum -= y_00 * (v_1 - x[1]);
sum -= y_01 * (x[1] - v_0);
sum += y_10 * (v_1 - x[1]);
sum += y_11 * (x[1] - v_0);
check = sum / ( (u_1 - u_0) * (v_1 - v_0) );
ok &= CppAD::NearEqual(dy[0] , check, eps, eps);
//
// dy
dx[0] = 0.0;
dx[1] = 1.0;
dy = f.Forward(1, dx);
//
// check
sum = 0.0;
sum -= y_00 * (u_1 - x[0]);
sum += y_01 * (u_1 - x[0]);
sum -= y_10 * (x[0] - u_0);
sum += y_11 * (x[0] - u_0);
check = sum / ( (u_1 - u_0) * (v_1 - v_0) );
ok &= CppAD::NearEqual(dy[0] , check, eps, eps);
//
return ok;
}
// END_USE_ATOMIC_FUNCTION
|