1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_forward.cpp}
Atomic Functions and Forward Mode: Example and Test
###################################################
Purpose
*******
This example demonstrates forward mode derivative calculation
using an :ref:`atomic_four-name` function.
Function
********
For this example, the atomic function
:math:`g : \B{R}^3 \rightarrow \B{R}^2` is defined by
.. math::
g(x) = \left( \begin{array}{c}
x_2 * x_2 \\
x_0 * x_1
\end{array} \right)
Jacobian
********
The corresponding Jacobian is
.. math::
g^{(1)} (x) = \left( \begin{array}{ccc}
0 & 0 & 2 x_2 \\
x_1 & x_0 & 0
\end{array} \right)
Hessian
*******
The Hessians of the component functions are
.. math::
g_0^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array} \right)
\W{,}
g_1^{(2)} ( x ) = \left( \begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array} \right)
Define Atomic Function
**********************
{xrst_literal
// BEGIN_DEFINE_ATOMIC_FUNCTION
// END_DEFINE_ATOMIC_FUNCTION
}
Use Atomic Function
*******************
{xrst_literal
// BEGIN_USE_ATOMIC_FUNCTION
// END_USE_ATOMIC_FUNCTION
}
{xrst_end atomic_four_forward.cpp}
*/
# include <cppad/cppad.hpp>
// BEGIN_DEFINE_ATOMIC_FUNCTION
// empty namespace
namespace {
//
class atomic_forward : public CppAD::atomic_four<double> {
public:
atomic_forward(const std::string& name) :
CppAD::atomic_four<double>(name)
{ }
private:
// for_type
bool for_type(
size_t call_id ,
const CppAD::vector<CppAD::ad_type_enum>& type_x ,
CppAD::vector<CppAD::ad_type_enum>& type_y ) override
{
bool ok = type_x.size() == 3; // n
ok &= type_y.size() == 2; // m
if( ! ok )
return false;
type_y[0] = type_x[2];
type_y[1] = std::max(type_x[0], type_x[1]);
return true;
}
// forward
bool forward(
size_t call_id ,
const CppAD::vector<bool>& select_y ,
size_t order_low ,
size_t order_up ,
const CppAD::vector<double>& tx ,
CppAD::vector<double>& ty ) override
{
size_t q = order_up + 1;
# ifndef NDEBUG
size_t n = tx.size() / q;
size_t m = ty.size() / q;
# endif
assert( n == 3 );
assert( m == 2 );
assert( order_low <= order_up );
// this example only implements up to second order forward mode
bool ok = order_up <= 2;
if( ! ok )
return ok;
// --------------------------------------------------------------
// Zero forward mode.
// This case must always be implemented
// g(x) = [ x_2 * x_2 ]
// [ x_0 * x_1 ]
// y^0 = f( x^0 )
if( order_low <= 0 )
{ // y_0^0 = x_2^0 * x_2^0
ty[0 * q + 0] = tx[2 * q + 0] * tx[2 * q + 0];
// y_1^0 = x_0^0 * x_1^0
ty[1 * q + 0] = tx[0 * q + 0] * tx[1 * q + 0];
}
if( order_up <= 0 )
return ok;
// --------------------------------------------------------------
// First order forward mode.
// This case is needed if first order forward mode is used.
// g'(x) = [ 0, 0, 2 * x_2 ]
// [ x_1, x_0, 0 ]
// y^1 = f'(x^0) * x^1
if( order_low <= 1 )
{ // y_0^1 = 2 * x_2^0 * x_2^1
ty[0 * q + 1] = 2.0 * tx[2 * q + 0] * tx[2 * q + 1];
// y_1^1 = x_1^0 * x_0^1 + x_0^0 * x_1^1
ty[1 * q + 1] = tx[1 * q + 0] * tx[0 * q + 1];
ty[1 * q + 1] += tx[0 * q + 0] * tx[1 * q + 1];
}
if( order_up <= 1 )
return ok;
// --------------------------------------------------------------
// Second order forward mode.
// This case is needed if second order forward mode is used.
// g'(x) = [ 0, 0, 2 x_2 ]
// [ x_1, x_0, 0 ]
//
// [ 0 , 0 , 0 ] [ 0 , 1 , 0 ]
// g_0''(x) = [ 0 , 0 , 0 ] g_1^{(2)} (x) = [ 1 , 0 , 0 ]
// [ 0 , 0 , 2 ] [ 0 , 0 , 0 ]
//
// y_0^2 = x^1 * g_0''( x^0 ) x^1 / 2! + g_0'( x^0 ) x^2
// = ( x_2^1 * 2.0 * x_2^1 ) / 2!
// + 2.0 * x_2^0 * x_2^2
ty[0 * q + 2] = tx[2 * q + 1] * tx[2 * q + 1];
ty[0 * q + 2] += 2.0 * tx[2 * q + 0] * tx[2 * q + 2];
//
// y_1^2 = x^1 * g_1''( x^0 ) x^1 / 2! + g_1'( x^0 ) x^2
// = ( x_1^1 * x_0^1 + x_0^1 * x_1^1) / 2
// + x_1^0 * x_0^2 + x_0^0 + x_1^2
ty[1 * q + 2] = tx[1 * q + 1] * tx[0 * q + 1];
ty[1 * q + 2] += tx[1 * q + 0] * tx[0 * q + 2];
ty[1 * q + 2] += tx[0 * q + 0] * tx[1 * q + 2];
// --------------------------------------------------------------
return ok;
}
};
}
// END_DEFINE_ATOMIC_FUNCTION
// BEGIN_USE_ATOMIC_FUNCTION
bool forward(void)
{ // ok, eps
bool ok = true;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// AD, NearEqual
using CppAD::AD;
using CppAD::NearEqual;
//
// afun
atomic_forward afun("atomic_forward");
//
// Create the function f(u) = g(u) for this example.
//
// n, u, au
size_t n = 3;
CPPAD_TESTVECTOR(double) u(n);
u[0] = 1.00;
u[1] = 2.00;
u[2] = 3.00;
CPPAD_TESTVECTOR( AD<double> ) au(n);
for(size_t j = 0; j < n; ++j)
au[j] = u[j];
CppAD::Independent(au);
//
// m, ay
size_t m = 2;
CPPAD_TESTVECTOR( AD<double> ) ay(m);
CPPAD_TESTVECTOR( AD<double> ) ax = au;
afun(ax, ay);
//
// f
CppAD::ADFun<double> f;
f.Dependent(au, ay);
//
// check function value
double check = u[2] * u[2];
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
check = u[0] * u[1];
ok &= NearEqual( Value(ay[1]) , check, eps, eps);
// ----------------------------------------------------------------
// zero order forward
//
// u0, y0
CPPAD_TESTVECTOR(double) u0(n), y0(m);
u0 = u;
y0 = f.Forward(0, u0);
check = u[2] * u[2];
ok &= NearEqual(y0[0] , check, eps, eps);
check = u[0] * u[1];
ok &= NearEqual(y0[1] , check, eps, eps);
// ----------------------------------------------------------------
// first order forward
//
// check_jac
double check_jac[] = {
0.0, 0.0, 2.0 * u[2],
u[1], u[0], 0.0
};
//
// u1
CPPAD_TESTVECTOR(double) u1(n);
for(size_t j = 0; j < n; j++)
u1[j] = 0.0;
//
// y1, j
CPPAD_TESTVECTOR(double) y1(m);
for(size_t j = 0; j < n; j++)
{ //
// u1, y1
// compute partial in j-th component direction
u1[j] = 1.0;
y1 = f.Forward(1, u1);
u1[j] = 0.0;
//
// check this partial
for(size_t i = 0; i < m; i++)
ok &= NearEqual(y1[i], check_jac[i * n + j], eps, eps);
}
// ----------------------------------------------------------------
// second order forward
//
// check_hes_0
double check_hes_0[] = {
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 2.0
};
//
// check_hes_1
double check_hes_1[] = {
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 0.0
};
//
// u2
CPPAD_TESTVECTOR(double) u2(n);
for(size_t j = 0; j < n; j++)
u2[j] = 0.0;
//
// y2, j
CPPAD_TESTVECTOR(double) y2(m);
for(size_t j = 0; j < n; j++)
{ //
// u1, y2
// first order forward in j-th direction
u1[j] = 1.0;
f.Forward(1, u1);
y2 = f.Forward(2, u2);
//
// check y2 element of Hessian diagonal
ok &= NearEqual(y2[0], check_hes_0[j * n + j] / 2.0, eps, eps);
ok &= NearEqual(y2[1], check_hes_1[j * n + j] / 2.0, eps, eps);
//
// k
for(size_t k = 0; k < n; k++) if( k != j )
{ //
// u1, y2
u1[k] = 1.0;
f.Forward(1, u1);
y2 = f.Forward(2, u2);
//
// y2 = (H_jj + H_kk + H_jk + H_kj) / 2.0
// y2 = (H_jj + H_kk) / 2.0 + H_jk
//
// check y2[0]
double H_jj = check_hes_0[j * n + j];
double H_kk = check_hes_0[k * n + k];
double H_jk = y2[0] - (H_kk + H_jj) / 2.0;
ok &= NearEqual(H_jk, check_hes_0[j * n + k], eps, eps);
//
// check y2[1]
H_jj = check_hes_1[j * n + j];
H_kk = check_hes_1[k * n + k];
H_jk = y2[1] - (H_kk + H_jj) / 2.0;
ok &= NearEqual(H_jk, check_hes_1[j * n + k], eps, eps);
//
// u1
u1[k] = 0.0;
}
// u1
u1[j] = 0.0;
}
// ----------------------------------------------------------------
return ok;
}
// END_USE_ATOMIC_FUNCTION
|