File: rev_depend.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (239 lines) | stat: -rw-r--r-- 6,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_lin_ode_rev_depend.cpp}
{xrst_spell
   cccc
}

Atomic Linear ODE Reverse Dependency Analysis: Example and Test
###############################################################

Purpose
*******
This example demonstrates calculating reverse dependency with
the :ref:`atomic_four_lin_ode-name` class; see
:ref:`atomic_four_lin_ode_rev_depend.hpp-name` .

y(t, x)
*******
We are given a positive integer m and define
:math:`y : \B{R} \times \B{R}^m \rightarrow \B{R}^m` by

.. math::

   y(t, x) = \prod_{i=0}^m x_i t^i / i !

It follows that

.. math::

   \partial_t y_i (t, x) = \left \{ \begin{array}{ll}
      0                   & \R{if} \; i = 0 \\
      x_i y_{i-1} (t, x)  & \R{otherwise}
   \end{array} \right .
   \\
   \partial_t y (t, x) =
   \left( \begin{array}{cccc}
   0        & 0        & \cdots & 0        \\
   x_1      & 0        & \cdots & 0        \\
   0        & x_2      &        & 0        \\
   \vdots   &          & \ddots & \vdots   \\
   0        & 0        & \cdots & x_m
   \end{array} \right)
   y (t, x)
   \W{,}
   y (0, x) =
   \left( \begin{array}{c}
   x_0      \\
   0        \\
   \vdots   \\
   0        \\
   \end{array} \right)

Problem Parameters
******************
The following problem parameters can be changed:
{xrst_literal
   // BEGIN_PROBLEM_PARAMETERS
   // END_PROBLEM_PARAMETERS
}

Source
******
{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end atomic_four_lin_ode_rev_depend.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>

namespace { // BEGIN_EMPTY_NAMESPACE

// y(t, x)
template <class Scalar, class Vector>
Vector Y(Scalar t, const Vector& x)
{  size_t m = x.size();
   Vector y(m);
   //
   // y
   y[0]               = x[0];
   for(size_t i = 1; i < m; ++i)
      y[i] = x[i] * y[i-1] * t / Scalar(i);

   return y;
}

} // END_EMPTY_NAMESPACE

bool rev_depend(void)
{  // ok, eps
   bool ok = true;
   //
   // sparse_rc, AD, eps99
   typedef CppAD::sparse_rc< CppAD::vector<size_t> > sparse_rc;
   using CppAD::AD;
   double eps99 = std::numeric_limits<double>::epsilon() * 99.0;
   // -----------------------------------------------------------------------
   // Record f
   // -----------------------------------------------------------------------
   //
   // afun
   CppAD::atomic_lin_ode<double> afun("atomic_lin_ode");
   //
   // BEGIN_PROBLEM_PARAMETERS
   // m, r, step
   size_t m      = 5;       // number of components in x and y
   double r      = 2.0;     // final time in the ODE
   double step   = 1.0;     // step size used to approximation ODE solution
   // END_PROBLEM_PARAMETERS
   //
   // pattern, transpose
   size_t nr  = m;
   size_t nc  = m;
   size_t nnz = m - 1;
   sparse_rc pattern(nr, nc, nnz);
   for(size_t k = 0; k < nnz; ++k)
   {  size_t i = k + 1;
      size_t j = k;
      pattern.set(k, i, j);
   }
   bool transpose = false;
   //
   // ax
   CPPAD_TESTVECTOR( AD<double> ) ax(m);
   for(size_t k = 0; k < m; ++k)
      ax[k] = double(k + 1);
   CppAD::Independent(ax);
   //
   // au
   // au = (x[1], ..., x[nnz-1], x[0], 0, ..., 0)
   CPPAD_TESTVECTOR( AD<double> ) au(nnz + m);
   for(size_t k = 0; k < nnz; ++k)
      au[k] = ax[k+1];
   for(size_t i = 0; i < m; ++i)
   {  if( i == 0 )
         au[nnz + i] = ax[0];
      else
         au[nnz + i] = 0.0;
   }
   //
   // ay
   CPPAD_TESTVECTOR( AD<double> ) ay(m);
   size_t call_id = afun.set(r, step, pattern, transpose);
   afun(call_id, au, ay);
   //
   // z_index
   // Fourth order Rosen34 method is exact approximation of y[i] for i <= 4
   size_t z_index = m - 1;
   assert(z_index <= 4);
   //
   // az
   CPPAD_TESTVECTOR( AD<double> ) az(1);
   az[0] = ay[z_index];
   //
   // f
   // optimize uses rev_depend
   CppAD::ADFun<double> f(ax, az);
   f.optimize("val_graph no_conditional_skip");
   // -----------------------------------------------------------------------
   // check_f
   // -----------------------------------------------------------------------
   CppAD::Independent(ax);
   AD<double> ar = r;
   ay    = Y(ar, ax);
   az[0] = ay[z_index];
   CppAD::ADFun<double> check_f(ax, az);
   // -----------------------------------------------------------------------
   // rev_depend
   // use test_rev_depend to call rev_depend directly
   // -----------------------------------------------------------------------
   //
   // depend_u
   CppAD::vector<bool> ident_zero_u(nnz + m), depend_u(nnz + m), depend_y(m);
   for(size_t i = 0; i < m; ++i)
   {  depend_y[i]     = i == z_index;
      ident_zero_u[i] = false;
   }
   for(size_t i = 1; i < m; ++i)
      ident_zero_u[nnz + i] = true;
   afun.test_rev_depend(call_id, ident_zero_u, depend_u, depend_y);
   //
   // depend_x
   CppAD::vector<bool> depend_x(m);
   depend_x[0] = depend_u[m-1];
   for(size_t j = 1; j < m; ++j)
      depend_x[j] = depend_u[j-1];
   //
   // x
   CPPAD_TESTVECTOR(double) x(m);
   for(size_t j = 0; j < m; ++j)
      x[j] = double( j + 2 );
   //
   // dw
   check_f.Forward(0, x);
   CPPAD_TESTVECTOR(double) w(1), dw(m);
   w[0] = 1.0;
   dw = check_f.Reverse(1, w);
   //
   // ok
   // note that for this x, partial w.r.t x[j] is non-zero if and only if
   // y[z_index] depends on x[j]
   for(size_t j = 0; j < m; ++j)
      ok &= depend_x[j] == (dw[j] != 0.0);
   //
   // -----------------------------------------------------------------------
   // forward mode on f
   // Check that the optimized version of agrees with check_f.
   // -----------------------------------------------------------------------
   //
   // z
   // zero order forward mode computation of f(x)
   CPPAD_TESTVECTOR(double) z = f.Forward(0, x);
   //
   // ok
   CPPAD_TESTVECTOR(double) check_z = check_f.Forward(0, x);
   ok &= CppAD::NearEqual(z[0], check_z[0], eps99, eps99);
   //
   // du, ok
   CPPAD_TESTVECTOR(double) dx(m), dz(1), check_dz(1);
   for(size_t j = 0; j < m; ++j)
      dx[j] = 0.0;
   //
   for(size_t j = 0; j < m; ++j)
   {  dx[j]     = 1.0;
      dz        = f.Forward(1, dx);
      check_dz  = check_f.Forward(1, dx);
      ok       &= CppAD::NearEqual(dz[0], check_dz[0], eps99, eps99);
      dx[j]     = 0.0;
   }
   // -----------------------------------------------------------------------
   return ok;
}
// END C++