File: sparsity.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (240 lines) | stat: -rw-r--r-- 6,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_mat_mul_sparsity.cpp}
{xrst_spell
   cccccccc
   cccccccccc
   rvec
}

Atomic Matrix Multiply Sparsity Patterns: Example and Test
##########################################################

Purpose
*******
This example demonstrates computing sparsity patterns with
the :ref:`atomic_four_mat_mul-name` class.

f(x)
****
For a matrix :math:`A` we define the function :math:`\R{rvec} ( A )`
to be the elements of :math:`A` in row major order.
For this example, the function :math:`f(x)` is

.. math::

   f(x) =
   \R{rvec} \left[
   \left( \begin{array}{cc}
   x_0 & x_1  \\
   x_2 & x_3  \\
   \end{array} \right)
   \left( \begin{array}{cc}
   x_4 & x_5  \\
   x_6 & x_7
   \end{array} \right)
   \right]
   =
   \R{rvec}
   \left( \begin{array}{cc}
   x_0 x_4 + x_1 x_6 & x_0 x_5 + x_1 x_7  \\
   x_2 x_4 + x_3 x_6 & x_2 x_5 + x_3 x_7  \\
   \end{array} \right)

.. math::

   f(x)
   =
   \left( \begin{array}{c}
   x_0 x_4 + x_1 x_6 \\
   x_0 x_5 + x_1 x_7 \\
   x_2 x_4 + x_3 x_6 \\
   x_2 x_5 + x_3 x_7
   \end{array} \right)

Jacobian of f(x)
****************
The Jacobian of :math:`f(x)` is

.. math::

   f^{(1)} (x) = \left( \begin{array}{cccccccc}
   % 0   1     2     3      4      5     6      7
   x_4 & x_6 & 0   & 0    & x_0  & 0   & x_1  & 0   \\ % 0
   x_5 & x_7 & 0   & 0    & 0    & x_0 & 0    & x_1 \\ % 1
   0   & 0   & x_4 & x_6  & x_2  & 0   & x_3  & 0   \\ % 2
   0   & 0   & x_5 & x_7  & 0    & x_2 & 0    & x_3 \\ % 3
   \end{array} \right)

Hessian
*******
The function :math:`f_2 (x)` is

.. math::

   f_2 (x) = x_2 x_4 + x_3 x_6

The Hessian of :math:`f_2(x)` is

.. math::

   f_2^{(2)} (x)
   =
   \left( \begin{array}{cccccccccc}
            & 0    & 1    & 2    & 3    & 4    & 5    & 6    & 7    \\
            & -    & -    & -    & -    & -    & -    & -    & -    \\
      0 \; |  & 0    & 0    & 0    & 0    & 0    & 0    & 0    & 0    \\
      1 \; |  & 0    & 0    & 0    & 0    & 0    & 0    & 0    & 0    \\
      2 \; |  & 0    & 0    & 0    & 0    & 1    & 0    & 0    & 0    \\
      3 \; |  & 0    & 0    & 0    & 0    & 0    & 0    & 1    & 0    \\
      4 \; |  & 0    & 0    & 1    & 0    & 0    & 0    & 0    & 0    \\
      5 \; |  & 0    & 0    & 0    & 0    & 0    & 0    & 0    & 0    \\
      6 \; |  & 0    & 0    & 0    & 1    & 0    & 0    & 0    & 0    \\
      7 \; |  & 0    & 0    & 0    & 0    & 0    & 0    & 0    & 0    \\
   \end{array} \right)

where the first row is the column index,
and the first column is the row index,
for the corresponding matrix entries above.

Source
******
{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end atomic_four_mat_mul_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/mat_mul/mat_mul.hpp>

bool sparsity(void)
{  // ok, eps
   bool ok = true;
   //
   // AD
   using CppAD::AD;
   using CppAD::sparse_rc;
   // -----------------------------------------------------------------------
   // Record f
   // -----------------------------------------------------------------------
   //
   // afun
   CppAD::atomic_mat_mul<double> afun("atomic_mat_mul");
   //
   // nleft, n_middle, n_right
   size_t n_left = 2, n_middle = 2, n_right = 2;
   //
   // nx, ax
   size_t nx = n_middle * (n_left + n_right);
   CPPAD_TESTVECTOR( AD<double> ) ax(nx);
   for(size_t j = 0; j < nx; ++j)
      ax[j] = AD<double>(j + 2);
   CppAD::Independent(ax);
   //
   // ny, ay
   size_t ny = n_left * n_right;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   //
   // ay
   size_t call_id = afun.set(n_left, n_middle, n_right);
   afun(call_id, ax, ay);
   //
   // f
   CppAD::ADFun<double> f(ax, ay);
   //
   // s_vector
   typedef CPPAD_TESTVECTOR(size_t) s_vector;
   //
   // eye_sparsity
   // nx by nx identitty matrix
   sparse_rc<s_vector> eye_sparsity;
   eye_sparsity.resize(nx, nx, nx);
   for(size_t i = 0; i < nx; ++i)
      eye_sparsity.set(i, i, i);
   //
   // -----------------------------------------------------------------------
   // jac_sparsity
   bool transpose     = false;
   bool dependency    = false;
   bool internal_bool = false;
   sparse_rc<s_vector> jac_sparsity;
   f.for_jac_sparsity(
      eye_sparsity, transpose, dependency, internal_bool, jac_sparsity
   );
   {  // check jac_sparsity
      //
      // row, col
      const s_vector& row       = jac_sparsity.row();
      const s_vector& col       = jac_sparsity.col();
      s_vector        row_major = jac_sparsity.row_major();
      //
      // ok
      ok &= jac_sparsity.nnz() == 16;
      for(size_t k = 0; k < jac_sparsity.nnz(); ++k)
         ok &= row[ row_major[k] ] == k / 4;
      // row 0
      ok &= col[ row_major[0] ]  == 0;
      ok &= col[ row_major[1] ]  == 1;
      ok &= col[ row_major[2] ]  == 4;
      ok &= col[ row_major[3] ]  == 6;
      // row 1
      ok &= col[ row_major[4] ]  == 0;
      ok &= col[ row_major[5] ]  == 1;
      ok &= col[ row_major[6] ]  == 5;
      ok &= col[ row_major[7] ]  == 7;
      // row 2
      ok &= col[ row_major[8] ]  == 2;
      ok &= col[ row_major[9] ]  == 3;
      ok &= col[ row_major[10] ] == 4;
      ok &= col[ row_major[11] ] == 6;
      // row 3
      ok &= col[ row_major[12] ] == 2;
      ok &= col[ row_major[13] ] == 3;
      ok &= col[ row_major[14] ] == 5;
      ok &= col[ row_major[15] ] == 7;
   }
   // ----------------------------------------------------------------
   //
   // select_y
   // corresponding to f_2
   CPPAD_TESTVECTOR(bool) select_y(ny);
   for(size_t i = 0; i < ny; ++i)
      select_y[i] = false;
   select_y[2]   = true;
   //
   // hes_sparsity
   transpose     = false;
   internal_bool = false;
   sparse_rc<s_vector> hes_sparsity;
   f.rev_hes_sparsity(select_y, transpose, internal_bool, hes_sparsity);
   {  // check hes_sparsity
      //
      // row, col
      const s_vector& row       = hes_sparsity.row();
      const s_vector& col       = hes_sparsity.col();
      s_vector        row_major = hes_sparsity.row_major();
      //
      // ok
      ok &= hes_sparsity.nnz() == 4;
      //
      ok &= row[ row_major[0] ] == 2;
      ok &= col[ row_major[0] ] == 4;
      //
      ok &= row[ row_major[1] ] == 3;
      ok &= col[ row_major[1] ] == 6;
      //
      ok &= row[ row_major[2] ] == 4;
      ok &= col[ row_major[2] ] == 2;
      //
      ok &= row[ row_major[3] ] == 6;
      ok &= col[ row_major[3] ] == 3;
   }
   return ok;
}
// END C++