1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_norm_sq.cpp}
Atomic Euclidean Norm Squared: Example and Test
###############################################
Function
********
This example demonstrates using :ref:`atomic_four-name`
to define the operation
:math:`g : \B{R}^n \rightarrow \B{R}` where
.. math::
g(x) = x_0^2 + \cdots + x_{n-1}^2
Purpose
*******
This atomic function demonstrates the following cases:
#. an arbitrary number of arguments *n*
#. zero and first order forward mode.
#. first order derivatives using reverse mode.
Define Atomic Function
**********************
{xrst_literal
// BEGIN_DEFINE_ATOMIC_FUNCTION
// END_DEFINE_ATOMIC_FUNCTION
}
Use Atomic Function
*******************
{xrst_literal
// BEGIN_USE_ATOMIC_FUNCTION
// END_USE_ATOMIC_FUNCTION
}
{xrst_end atomic_four_norm_sq.cpp}
*/
# include <cppad/cppad.hpp>
// BEGIN_DEFINE_ATOMIC_FUNCTION
// empty namespace
namespace {
// BEGIN CONSTRUCTOR
class atomic_norm_sq : public CppAD::atomic_four<double> {
public:
atomic_norm_sq(const std::string& name) :
CppAD::atomic_four<double>(name)
{ }
// END CONSTRUCTOR
private:
// BEGIN FOR_TYPE
bool for_type(
size_t call_id ,
const CppAD::vector<CppAD::ad_type_enum>& type_x ,
CppAD::vector<CppAD::ad_type_enum>& type_y ) override
{ assert( call_id == 0 ); // default value
assert(type_y.size() == 1 ); // m
//
// type_y
size_t n = type_x.size();
type_y[0] = CppAD::constant_enum;
for(size_t j = 0; j < n; ++j)
type_y[0] = std::max(type_y[0], type_x[j]);
return true;
}
// END FOR_TYPE
// BEGIN FORWARD
bool forward(
size_t call_id ,
const CppAD::vector<bool>& select_y ,
size_t order_low ,
size_t order_up ,
const CppAD::vector<double>& tx ,
CppAD::vector<double>& ty ) override
{
size_t q = order_up + 1;
size_t n = tx.size() / q;
# ifndef NDEBUG
size_t m = ty.size() / q;
assert( call_id == 0 );
assert( m == 1 );
assert( m == select_y.size() );
# endif
// ok
bool ok = order_up <= 1 && order_low <= order_up;
if ( ! ok )
return ok;
//
// sum = x_0^0 * x_0^0 + x_1^0 * x_1^0 + ...
double sum = 0.0;
for(size_t j = 0; j < n; ++j)
{ double xj0 = tx[ j * q + 0];
sum += xj0 * xj0;
}
//
// ty[0] = sum
if( order_low <= 0 )
ty[0] = sum;
if( order_up < 1 )
return ok;
// sum = x_0^0 * x_0^1 + x_1^0 ^ x_1^1 + ...
sum = 0.0;
for(size_t j = 0; j < n; ++j)
{ double xj0 = tx[ j * q + 0];
double xj1 = tx[ j * q + 1];
sum += xj0 * xj1;
}
// ty[1] = 2.0 * sum
assert( order_up == 1 );
ty[1] = 2.0 * sum;
return ok;
}
// END FORWARD
// BEGIN REVERSE
bool reverse(
size_t call_id ,
const CppAD::vector<bool>& select_x ,
size_t order_up ,
const CppAD::vector<double>& tx ,
const CppAD::vector<double>& ty ,
CppAD::vector<double>& px ,
const CppAD::vector<double>& py ) override
{
size_t q = order_up + 1;
size_t n = tx.size() / q;
# ifndef NDEBUG
size_t m = ty.size() / q;
assert( call_id == 0 );
assert( m == 1 );
assert( px.size() == tx.size() );
assert( py.size() == ty.size() );
assert( n == select_x.size() );
# endif
// ok
bool ok = order_up == 0;
if ( ! ok )
return ok;
// first order reverse mode
for(size_t j = 0; j < n; ++j)
{ // x_0^0
double xj0 = tx[ j * q + 0];
//
// H( {x_j^k} ) = G[ F( {x_j^k} ), {x_j^k} ]
double dF = 2.0 * xj0; // partial F w.r.t x_j^0
double dG = py[0]; // partial of G w.r.t. y[0]
double dH = dG * dF; // partial of H w.r.t. x_j^0
// px[j]
px[j] = dH;
}
return ok;
}
// END REVERSE
// BEGIN JAC_SPARSITY
// Use deprecated version of this callback to test that is still works
// (missing the ident_zero_x argument).
bool jac_sparsity(
size_t call_id ,
bool dependency ,
// const CppAD::vector<bool>& ident_zero_x,
const CppAD::vector<bool>& select_x ,
const CppAD::vector<bool>& select_y ,
CppAD::sparse_rc< CppAD::vector<size_t> >& pattern_out ) override
{ size_t n = select_x.size();
size_t m = select_y.size();
# ifndef NDEBUG
assert( call_id == 0 );
assert( m == 1 );
# endif
// nnz
size_t nnz = 0;
if( select_y[0] )
{ for(size_t j = 0; j < n; ++j)
{ if( select_x[j] )
++nnz;
}
}
// pattern_out
pattern_out.resize(m, n, nnz);
size_t k = 0;
if( select_y[0] )
{ for(size_t j = 0; j < n; ++j)
{ if( select_x[j] )
pattern_out.set(k++, 0, j);
}
}
assert( k == nnz );
return true;
}
// END JAC_SPARSITY
// BEGIN HES_SPARSITY
// Use deprecated version of this callback to test that is still works
// (missing the ident_zero_x argument).
bool hes_sparsity(
size_t call_id ,
// const CppAD::vector<bool>& ident_zero_x,
const CppAD::vector<bool>& select_x ,
const CppAD::vector<bool>& select_y ,
CppAD::sparse_rc< CppAD::vector<size_t> >& pattern_out ) override
{ size_t n = select_x.size();
# ifndef NDEBUG
size_t m = select_y.size();
assert( call_id == 0 );
assert( m == 1 );
# endif
// nnz
size_t nnz = 0;
if( select_y[0] )
{ for(size_t j = 0; j < n; ++j)
{ if( select_x[j] )
++nnz;
}
}
// pattern_out
pattern_out.resize(n, n, nnz);
size_t k = 0;
if( select_y[0] )
{ for(size_t j = 0; j < n; ++j)
{ if( select_x[j] )
pattern_out.set(k++, j, j);
}
}
return true;
}
// END HES_SPARSITY
// BEGIN REV_DEPEND
bool rev_depend(
size_t call_id ,
CppAD::vector<bool>& depend_x ,
const CppAD::vector<bool>& depend_y ) override
{ size_t n = depend_x.size();
# ifndef NDEBUG
size_t m = depend_y.size();
assert( call_id == 0 );
assert( m == 1 );
# endif
for(size_t j = 0; j < n; ++j)
depend_x[j] = depend_y[0];
//
return true;
}
// END REV_DEPEND
};
}
// END_DEFINE_ATOMIC_FUNCTION
// BEGIN_USE_ATOMIC_FUNCTION
bool norm_sq(void)
{ // ok, eps
bool ok = true;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// atom_norm_sq
atomic_norm_sq afun("atomic_norm_sq");
//
// n, m
size_t n = 2;
size_t m = 1;
//
// x
CPPAD_TESTVECTOR(double) x(n);
for(size_t j = 0; j < n; ++j)
x[j] = 1.0 / (double(j) + 1.0);
//
// ax
CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(n);
for(size_t j = 0; j < n; ++j)
ax[j] = x[j];
CppAD::Independent(ax);
//
// ay
CPPAD_TESTVECTOR( CppAD::AD<double> ) ay(m);
afun(ax, ay);
//
// f
CppAD::ADFun<double> f;
f.Dependent (ax, ay);
//
// check
double check = 0.0;
for(size_t j = 0; j < n; ++j)
check += x[j] * x[j];
//
// ok
// check ay[0]
ok &= CppAD::NearEqual( Value(ay[0]) , check, eps, eps);
//
// ok
// check zero order forward mode
CPPAD_TESTVECTOR(double) y(m);
y = f.Forward(0, x);
ok &= CppAD::NearEqual(y[0] , check, eps, eps);
//
// n2, check
size_t n2 = n / 2;
check = 2.0 * x[n2];
//
// ok
// check first order forward mode partial w.r.t. x[n2]
CPPAD_TESTVECTOR(double) x1(n), y1(m);
for(size_t j = 0; j < n; ++j)
x1[j] = 0.0;
x1[n2] = 1.0;
y1 = f.Forward(1, x1);
ok &= CppAD::NearEqual(y1[0] , check, eps, eps);
//
// ok
// first order reverse mode
size_t q = 1;
CPPAD_TESTVECTOR(double) w(m), dw(n * q);
w[0] = 1.;
dw = f.Reverse(q, w);
for(size_t j = 0; j < n; ++j)
{ check = 2.0 * x[j];
ok &= CppAD::NearEqual(dw[j] , check, eps, eps);
}
//
// pattern_out
// reverse mode Jacobian sparstiy pattern
CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
pattern_in.resize(m, m, m);
for(size_t i = 0; i < m; ++i)
pattern_in.set(i, i, i);
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
//
// ok
ok &= pattern_out.nnz() == n;
CPPAD_TESTVECTOR(size_t) row_major = pattern_out.row_major();
for(size_t j = 0; j < n; ++j)
{ size_t r = pattern_out.row()[ row_major[j] ];
size_t c = pattern_out.col()[ row_major[j] ];
ok &= r == 0 && c == j;
}
//
// pattern_out
// forward mode Hessian sparsity pattern
CPPAD_TESTVECTOR(bool) select_x(n), select_y(m);
for(size_t j = 0; j < n; ++j)
select_x[j] = true;
for(size_t i = 0; i < m; ++i)
select_y[i] = true;
internal_bool = false;
f.for_hes_sparsity(
select_x, select_y, internal_bool, pattern_out
);
//
// ok
ok &= pattern_out.nnz() == n;
row_major = pattern_out.row_major();
for(size_t j = 0; j < n; ++j)
{ size_t r = pattern_out.row()[ row_major[j] ];
size_t c = pattern_out.col()[ row_major[j] ];
ok &= r == j && c == j;
}
//
// optimize
// this uses the rev_depend override above
f.optimize("val_graph no_conditional_skip");
//
// ok
// check zero order forward mode (on optimized version of f)
y = f.Forward(0, x);
check = 0.0;
for(size_t j = 0; j < n; ++j)
check += x[j] * x[j];
ok &= CppAD::NearEqual(y[0] , check, eps, eps);
//
return ok;
}
// END_USE_ATOMIC_FUNCTION
|