1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_vector_hes_sparsity.cpp}
Atomic Vector Sparsity Patterns Example
#######################################
f(u, v)
*******
For this example,
:math:`f : \B{R}^{3m} \rightarrow \B{R}^m`
is defined by :math:`f(u, v, w) = - u * v * w`.
where *u* , *v* , and *w* are in :math:`\B{R}^m`.
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end atomic_four_vector_hes_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/vector/vector.hpp>
bool hes_sparsity(void)
{ bool ok = true;
using CppAD::NearEqual;
using CppAD::AD;
//
// vec_op
// atomic vector_op object
CppAD::atomic_vector<double> vec_op("atomic_vector");
//
// m
// size of u, v, and w
size_t m = 6;
//
// n
size_t n = 3 * m;
//
// mul_op, neg_op
typedef CppAD::atomic_vector<double>::op_enum_t op_enum_t;
op_enum_t mul_op = CppAD::atomic_vector<double>::mul_enum;
op_enum_t neg_op = CppAD::atomic_vector<double>::neg_enum;
// -----------------------------------------------------------------------
// Record f(u, v, w) = - u * v * w
// -----------------------------------------------------------------------
// Independent variable vector
CPPAD_TESTVECTOR( CppAD::AD<double> ) auvw(n);
for(size_t j = 0; j < n; ++j)
auvw[j] = AD<double>(1 + j);
CppAD::Independent(auvw);
//
// au, av, aw
CPPAD_TESTVECTOR( CppAD::AD<double> ) au(m), av(m), aw(m);
for(size_t i = 0; i < m; ++i)
{ au[i] = auvw[0 * m + i];
av[i] = auvw[1 * m + i];
aw[i] = auvw[2 * m + i];
}
//
// ax = (au, av)
CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(2 * m);
for(size_t i = 0; i < m; ++i)
{ ax[i] = au[i];
ax[m + i] = av[i];
}
//
// ay = u * v
CPPAD_TESTVECTOR( CppAD::AD<double> ) ay(m);
vec_op(mul_op, ax, ay);
//
// ax = (ay, aw)
for(size_t i = 0; i < m; ++i)
{ ax[i] = ay[i];
ax[m + i] = aw[i];
}
//
// az = ay * w
CPPAD_TESTVECTOR( CppAD::AD<double> ) az(m);
vec_op(mul_op, ax, az);
//
// ay = - az
vec_op(neg_op, az, ay);
//
// f
CppAD::ADFun<double> f(auvw, ay);
//
// size_vector, sparsity_pattern
typedef CPPAD_TESTVECTOR(size_t) size_vector;
typedef CppAD::sparse_rc<size_vector> sparsity_pattern;
// -----------------------------------------------------------------------
// Hessian sparsity
// -----------------------------------------------------------------------
for(size_t direction = 0; direction < 2; ++direction)
{ sparsity_pattern pattern_out;
//
// select_range
CPPAD_TESTVECTOR(bool) select_range(m);
for(size_t i = 0; i < m; ++i)
select_range[i] = true;
//
if( direction == 0 )
{ // Forward
//
// select_domain
CPPAD_TESTVECTOR(bool) select_domain(n);
for(size_t j = 0; j < n; ++j)
select_domain[j] = true;
//
// pattern_out
bool internal_bool = false;
f.for_hes_sparsity(
select_domain, select_range, internal_bool, pattern_out
);
}
else
{ // Reverse
//
// transpose, internal_bool
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
//
// pattern_in
sparsity_pattern pattern_in(n, n, n);
for(size_t j = 0; j < n; ++j)
pattern_in.set(j, j, j);
//
// f stores forward Jacobian
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
//
// pattern_out
f.rev_hes_sparsity(
select_range, transpose, internal_bool, pattern_out
);
}
//
// ok
ok &= pattern_out.nnz() == 2 * n;
ok &= pattern_out.nr() == n;
ok &= pattern_out.nc() == n;
//
// row, col, row_major
const size_vector& row = pattern_out.row();
const size_vector& col = pattern_out.col();
size_vector row_major = pattern_out.row_major();
//
// ok
size_t ell = 0;
for(size_t i = 0; i < m; ++i)
{ // first non-zero in row i
size_t k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == m + i;
// second non-zero in row i
k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == 2 * m + i;
}
for(size_t i = m; i < 2 * m; ++i)
{ // first non-zero in row i
size_t k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == i - m;
// second non-zero in row i
k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == i + m;
}
for(size_t i = 2 * m; i < 3 * m; ++i)
{ // first non-zero in row i
size_t k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == i - 2 * m;
// second non-zero in row i
k = row_major[ell++];
ok &= row[k] == i;
ok &= col[k] == i - m;
}
}
//
return ok;
}
// END C++
|