File: hes_sparsity.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (192 lines) | stat: -rw-r--r-- 5,505 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_vector_hes_sparsity.cpp}

Atomic Vector Sparsity Patterns Example
#######################################

f(u, v)
*******
For this example,
:math:`f : \B{R}^{3m} \rightarrow \B{R}^m`
is defined by :math:`f(u, v, w) = - u * v * w`.
where *u* , *v* , and *w* are in :math:`\B{R}^m`.

Source
******
{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end atomic_four_vector_hes_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/vector/vector.hpp>
bool hes_sparsity(void)
{  bool ok = true;
   using CppAD::NearEqual;
   using CppAD::AD;
   //
   // vec_op
   // atomic vector_op object
   CppAD::atomic_vector<double> vec_op("atomic_vector");
   //
   // m
   // size of u, v, and w
   size_t m = 6;
   //
   // n
   size_t n = 3 * m;
   //
   // mul_op, neg_op
   typedef CppAD::atomic_vector<double>::op_enum_t op_enum_t;
   op_enum_t mul_op = CppAD::atomic_vector<double>::mul_enum;
   op_enum_t neg_op = CppAD::atomic_vector<double>::neg_enum;
   // -----------------------------------------------------------------------
   // Record f(u, v, w) = - u * v * w
   // -----------------------------------------------------------------------
   // Independent variable vector
   CPPAD_TESTVECTOR( CppAD::AD<double> ) auvw(n);
   for(size_t j = 0; j < n; ++j)
      auvw[j] = AD<double>(1 + j);
   CppAD::Independent(auvw);
   //
   // au, av, aw
   CPPAD_TESTVECTOR( CppAD::AD<double> ) au(m), av(m), aw(m);
   for(size_t i = 0; i < m; ++i)
   {  au[i] = auvw[0 * m + i];
      av[i] = auvw[1 * m + i];
      aw[i] = auvw[2 * m + i];
   }
   //
   // ax = (au, av)
   CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(2 * m);
   for(size_t i = 0; i < m; ++i)
   {  ax[i]     = au[i];
      ax[m + i] = av[i];
   }
   //
   // ay = u * v
   CPPAD_TESTVECTOR( CppAD::AD<double> ) ay(m);
   vec_op(mul_op, ax, ay);
   //
   // ax = (ay, aw)
   for(size_t i = 0; i < m; ++i)
   {  ax[i]     = ay[i];
      ax[m + i] = aw[i];
   }
   //
   // az = ay * w
   CPPAD_TESTVECTOR( CppAD::AD<double> ) az(m);
   vec_op(mul_op, ax, az);
   //
   // ay = - az
   vec_op(neg_op, az, ay);
   //
   // f
   CppAD::ADFun<double> f(auvw, ay);
   //
   // size_vector, sparsity_pattern
   typedef CPPAD_TESTVECTOR(size_t) size_vector;
   typedef CppAD::sparse_rc<size_vector> sparsity_pattern;
   // -----------------------------------------------------------------------
   // Hessian sparsity
   // -----------------------------------------------------------------------
   for(size_t direction = 0; direction < 2; ++direction)
   {  sparsity_pattern pattern_out;
      //
      // select_range
      CPPAD_TESTVECTOR(bool) select_range(m);
      for(size_t i = 0; i < m; ++i)
         select_range[i] = true;
      //
      if( direction == 0 )
      {  // Forward
         //
         // select_domain
         CPPAD_TESTVECTOR(bool) select_domain(n);
         for(size_t j = 0; j < n; ++j)
            select_domain[j] = true;
         //
         // pattern_out
         bool internal_bool = false;
         f.for_hes_sparsity(
            select_domain, select_range, internal_bool, pattern_out
         );
      }
      else
      {  // Reverse
         //
         // transpose, internal_bool
         bool transpose     = false;
         bool dependency    = false;
         bool internal_bool = false;
         //
         // pattern_in
         sparsity_pattern pattern_in(n, n, n);
         for(size_t j = 0; j < n; ++j)
            pattern_in.set(j, j, j);
         //
         // f stores forward Jacobian
         f.for_jac_sparsity(
            pattern_in, transpose, dependency, internal_bool, pattern_out
         );
         //
         // pattern_out
         f.rev_hes_sparsity(
            select_range, transpose, internal_bool, pattern_out
         );
      }
      //
      // ok
      ok &= pattern_out.nnz() == 2 * n;
      ok &= pattern_out.nr()  == n;
      ok &= pattern_out.nc()  == n;
      //
      // row, col, row_major
      const size_vector& row = pattern_out.row();
      const size_vector& col = pattern_out.col();
      size_vector row_major  = pattern_out.row_major();
      //
      // ok
      size_t ell = 0;
      for(size_t i = 0; i < m; ++i)
      {  // first non-zero in row i
         size_t k = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == m + i;
         // second non-zero in row i
         k        = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == 2 * m + i;
      }
      for(size_t i = m; i < 2 * m; ++i)
      {  // first non-zero in row i
         size_t k = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == i - m;
         // second non-zero in row i
         k        = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == i + m;
      }
      for(size_t i = 2 * m; i < 3 * m; ++i)
      {  // first non-zero in row i
         size_t k = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == i - 2 * m;
         // second non-zero in row i
         k        = row_major[ell++];
         ok      &= row[k] == i;
         ok      &= col[k] == i - m;
      }
   }
   //
   return ok;
}
// END C++