File: eigen_cholesky.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (243 lines) | stat: -rw-r--r-- 7,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin atomic_two_eigen_cholesky.cpp app}
{xrst_spell
   chol
}

Atomic Eigen Cholesky Factorization: Example and Test
#####################################################

Description
***********
The :ref:`ADFun-name` function object *f* for this example is

.. math::

   f(x)
   =
   \R{chol} \left( \begin{array}{cc}
      x_0   & x_1 \\
      x_1   & x_2
   \end{array} \right)
   =
   \frac{1}{ \sqrt{x_0} }
   \left( \begin{array}{cc}
      x_0 & 0 \\
      x_1 & \sqrt{ x_0 x_2 - x_1 x_1 }
   \end{array} \right)

where the matrix is positive definite; i.e.,
:math:`x_0 > 0`, :math:`x_2 > 0` and
:math:`x_0 x_2 - x_1 x_1 > 0`.

Contents
********
{xrst_toc_table
   xrst/theory/cholesky.xrst
   include/cppad/example/atomic_two/eigen_cholesky.hpp
}

Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_two/eigen_cholesky.hpp>

bool eigen_cholesky(void)
{
   typedef double scalar;
   typedef atomic_eigen_cholesky<scalar>::ad_scalar ad_scalar;
   typedef atomic_eigen_cholesky<scalar>::ad_matrix ad_matrix;
   //
   bool ok    = true;
   scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
   using CppAD::NearEqual;
   //
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
   // -------------------------------------------------------------------
   // object that computes cholesky factor of a matrix
   atomic_eigen_cholesky<scalar> cholesky;
   // -------------------------------------------------------------------
   // declare independent variable vector x
   size_t n = 3;
   CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
   ad_x[0] = 2.0;
   ad_x[1] = 0.5;
   ad_x[2] = 3.0;
   CppAD::Independent(ad_x);
   // -------------------------------------------------------------------
   // A = [ x[0]  x[1] ]
   //     [ x[1]  x[2] ]
   size_t nr  = 2;
   ad_matrix ad_A(nr, nr);
   ad_A(0, 0) = ad_x[0];
   ad_A(1, 0) = ad_x[1];
   ad_A(0, 1) = ad_x[1];
   ad_A(1, 1) = ad_x[2];
   // -------------------------------------------------------------------
   // use atomic operation to L such that A = L * L^T
   ad_matrix ad_L = cholesky.op(ad_A);
   // -------------------------------------------------------------------
   // declare the dependent variable vector y
   size_t m = 3;
   CPPAD_TESTVECTOR(ad_scalar) ad_y(m);
   ad_y[0] = ad_L(0, 0);
   ad_y[1] = ad_L(1, 0);
   ad_y[2] = ad_L(1, 1);
   CppAD::ADFun<scalar> f(ad_x, ad_y);
   // -------------------------------------------------------------------
   // check zero order forward mode
   CPPAD_TESTVECTOR(scalar) x(n), y(m);
   x[0] = 2.0;
   x[1] = 0.5;
   x[2] = 5.0;
   y   = f.Forward(0, x);
   scalar check;
   check = std::sqrt( x[0] );
   ok   &= NearEqual(y[0], check, eps, eps);
   check = x[1] / std::sqrt( x[0] );
   ok   &= NearEqual(y[1], check, eps, eps);
   check = std::sqrt( x[2] - x[1] * x[1] / x[0] );
   ok   &= NearEqual(y[2], check, eps, eps);
   // -------------------------------------------------------------------
   // check first order forward mode
   CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
   //
   // partial w.r.t. x[0]
   x1[0] = 1.0;
   x1[1] = 0.0;
   x1[2] = 0.0;
   //
   y1    = f.Forward(1, x1);
   check = 1.0 / (2.0 * std::sqrt( x[0] ) );
   ok   &= NearEqual(y1[0], check, eps, eps);
   //
   check = - x[1] / (2.0 * x[0] * std::sqrt( x[0] ) );
   ok   &= NearEqual(y1[1], check, eps, eps);
   //
   check = std::sqrt( x[2] - x[1] * x[1] / x[0] );
   check = x[1] * x[1] / (x[0] * x[0] * 2.0 * check);
   ok   &= NearEqual(y1[2], check, eps, eps);
   //
   // partial w.r.t. x[1]
   x1[0] = 0.0;
   x1[1] = 1.0;
   x1[2] = 0.0;
   //
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], 0.0, eps, eps);
   //
   check = 1.0 / std::sqrt( x[0] );
   ok   &= NearEqual(y1[1], check, eps, eps);
   //
   check = std::sqrt( x[2] - x[1] * x[1] / x[0] );
   check = - 2.0 * x[1] / (2.0 * check * x[0] );
   ok   &= NearEqual(y1[2], check, eps, eps);
   //
   // partial w.r.t. x[2]
   x1[0] = 0.0;
   x1[1] = 0.0;
   x1[2] = 1.0;
   //
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], 0.0, eps, eps);
   ok   &= NearEqual(y1[1], 0.0, eps, eps);
   //
   check = std::sqrt( x[2] - x[1] * x[1] / x[0] );
   check = 1.0 / (2.0 * check);
   ok   &= NearEqual(y1[2], check, eps, eps);
   // -------------------------------------------------------------------
   // check second order forward mode
   CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
   //
   // second partial w.r.t x[2]
   x2[0] = 0.0;
   x2[1] = 0.0;
   x2[2] = 0.0;
   y2    = f.Forward(2, x2);
   ok   &= NearEqual(y2[0], 0.0, eps, eps);
   ok   &= NearEqual(y2[1], 0.0, eps, eps);
   //
   check = std::sqrt( x[2] - x[1] * x[1] / x[0] );  // function value
   check = - 1.0 / ( 4.0 * check * check * check ); // second derivative
   check = 0.5 * check;                             // taylor coefficient
   ok   &= NearEqual(y2[2], check, eps, eps);
   // -------------------------------------------------------------------
   // check first order reverse mode
   CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
   w[0] = 0.0;
   w[1] = 0.0;
   w[2] = 1.0;
   d1w  = f.Reverse(1, w);
   //
   // partial of f[2] w.r.t x[0]
   scalar f2    = std::sqrt( x[2] - x[1] * x[1] / x[0] );
   scalar f2_x0 = x[1] * x[1] / (2.0 * f2 * x[0] * x[0] );
   ok          &= NearEqual(d1w[0], f2_x0, eps, eps);
   //
   // partial of f[2] w.r.t x[1]
   scalar f2_x1 = - x[1] / (f2 * x[0] );
   ok          &= NearEqual(d1w[1], f2_x1, eps, eps);
   //
   // partial of f[2] w.r.t x[2]
   scalar f2_x2 = 1.0 / (2.0 * f2 );
   ok          &= NearEqual(d1w[2], f2_x2, eps, eps);
   // -------------------------------------------------------------------
   // check second order reverse mode
   CPPAD_TESTVECTOR(scalar) d2w(2 * n);
   d2w  = f.Reverse(2, w);
   //
   // check first order results
   ok &= NearEqual(d2w[0 * 2 + 0], f2_x0, eps, eps);
   ok &= NearEqual(d2w[1 * 2 + 0], f2_x1, eps, eps);
   ok &= NearEqual(d2w[2 * 2 + 0], f2_x2, eps, eps);
   //
   // check second order results
   scalar f2_x2_x0 = - 0.5 * f2_x0 / (f2 * f2 );
   ok             &= NearEqual(d2w[0 * 2 + 1], f2_x2_x0, eps, eps);
   scalar f2_x2_x1 = - 0.5 * f2_x1 / (f2 * f2 );
   ok             &= NearEqual(d2w[1 * 2 + 1], f2_x2_x1, eps, eps);
   scalar f2_x2_x2 = - 0.5 * f2_x2 / (f2 * f2 );
   ok             &= NearEqual(d2w[2 * 2 + 1], f2_x2_x2, eps, eps);
   // -------------------------------------------------------------------
   // check third order reverse mode
   CPPAD_TESTVECTOR(scalar) d3w(3 * n);
   d3w  = f.Reverse(3, w);
   //
   // check first order results
   ok &= NearEqual(d3w[0 * 3 + 0], f2_x0, eps, eps);
   ok &= NearEqual(d3w[1 * 3 + 0], f2_x1, eps, eps);
   ok &= NearEqual(d3w[2 * 3 + 0], f2_x2, eps, eps);
   //
   // check second order results
   ok             &= NearEqual(d3w[0 * 3 + 1], f2_x2_x0, eps, eps);
   ok             &= NearEqual(d3w[1 * 3 + 1], f2_x2_x1, eps, eps);
   ok             &= NearEqual(d3w[2 * 3 + 1], f2_x2_x2, eps, eps);
   // -------------------------------------------------------------------
   scalar f2_x2_x2_x0 = - 0.5 * f2_x2_x0 / (f2 * f2);
   f2_x2_x2_x0 += f2_x2 * f2_x0 / (f2 * f2 * f2);
   ok          &= NearEqual(d3w[0 * 3 + 2], 0.5 * f2_x2_x2_x0, eps, eps);
   scalar f2_x2_x2_x1 = - 0.5 * f2_x2_x1 / (f2 * f2);
   f2_x2_x2_x1 += f2_x2 * f2_x1 / (f2 * f2 * f2);
   ok          &= NearEqual(d3w[1 * 3 + 2], 0.5 * f2_x2_x2_x1, eps, eps);
   scalar f2_x2_x2_x2 = - 0.5 * f2_x2_x2 / (f2 * f2);
   f2_x2_x2_x2 += f2_x2 * f2_x2 / (f2 * f2 * f2);
   ok          &= NearEqual(d3w[2 * 3 + 2], 0.5 * f2_x2_x2_x2, eps, eps);
   return ok;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end atomic_two_eigen_cholesky.cpp}
*/