File: eigen_mat_inv.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (183 lines) | stat: -rw-r--r-- 6,323 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin atomic_two_eigen_mat_inv.cpp app}

Atomic Eigen Matrix Inverse: Example and Test
#############################################

Description
***********
The :ref:`ADFun-name` function object *f* for this example is

.. math::

   f(x) =
   \left( \begin{array}{cc}
      x_0   & 0 \\
      0   & x_1
   \end{array} \right)^{-1}
   \left( \begin{array}{c}
      0   \\
      x_2
   \end{array} \right)
   =
   \left( \begin{array}{c}
      0 \\
      x_2 / x_1 )
   \end{array} \right)

{xrst_toc_hidden
   include/cppad/example/atomic_two/eigen_mat_inv.hpp
}

Class Definition
****************
This example uses the file :ref:`atomic_two_eigen_mat_inv.hpp-name`
which defines matrix multiply as a :ref:`atomic_two-name` operation.

Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_two/eigen_mat_inv.hpp>
# include <cppad/example/atomic_two/eigen_mat_mul.hpp>

bool eigen_mat_inv(void)
{
   typedef double                                   scalar;
   typedef CppAD::AD<scalar>                        ad_scalar;
   typedef atomic_eigen_mat_inv<scalar>::ad_matrix  ad_matrix;
   //
   bool ok    = true;
   scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
   using CppAD::NearEqual;
   //
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
   // -------------------------------------------------------------------
   // object that multiplies matrices
   atomic_eigen_mat_mul<scalar> mat_mul;
   // -------------------------------------------------------------------
   // object that computes inverse of a square matrix
   atomic_eigen_mat_inv<scalar> mat_inv;
   // -------------------------------------------------------------------
   // declare independent variable vector x
   size_t n = 3;
   CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
   for(size_t j = 0; j < n; j++)
      ad_x[j] = ad_scalar(j + 1);
   CppAD::Independent(ad_x);
   // -------------------------------------------------------------------
   // left = [ x[0]  0    ]
   //        [ 0     x[1] ]
   size_t nr_left  = 2;
   ad_matrix ad_left(nr_left, nr_left);
   ad_left(0, 0) = ad_x[0];
   ad_left(0, 1) = ad_scalar(0.0);
   ad_left(1, 0) = ad_scalar(0.0);
   ad_left(1, 1) = ad_x[1];
   // -------------------------------------------------------------------
   // right = [ 0 , x[2] ]^T
   size_t nc_right = 1;
   ad_matrix ad_right(nr_left, nc_right);
   ad_right(0, 0) = ad_scalar(0.0);
   ad_right(1, 0) = ad_x[2];
   // -------------------------------------------------------------------
   // use atomic operation to compute left^{-1}
   ad_matrix ad_left_inv = mat_inv.op(ad_left);
   // use atomic operation to multiply left^{-1} * right
   ad_matrix ad_result   = mat_mul.op(ad_left_inv, ad_right);
   // -------------------------------------------------------------------
   // declare the dependent variable vector y
   size_t m = 2;
   CPPAD_TESTVECTOR(ad_scalar) ad_y(2);
   for(size_t i = 0; i < m; i++)
      ad_y[i] = ad_result( long(i), 0);
   CppAD::ADFun<scalar> f(ad_x, ad_y);
   // -------------------------------------------------------------------
   // check zero order forward mode
   CPPAD_TESTVECTOR(scalar) x(n), y(m);
   for(size_t i = 0; i < n; i++)
      x[i] = scalar(i + 2);
   y   = f.Forward(0, x);
   ok &= NearEqual(y[0], 0.0,          eps, eps);
   ok &= NearEqual(y[1], x[2] / x[1],  eps, eps);
   // -------------------------------------------------------------------
   // check first order forward mode
   CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
   x1[0] = 1.0;
   x1[1] = 0.0;
   x1[2] = 0.0;
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], 0.0,        eps, eps);
   ok   &= NearEqual(y1[1], 0.0,        eps, eps);
   x1[0] = 0.0;
   x1[1] = 0.0;
   x1[2] = 1.0;
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], 0.0,        eps, eps);
   ok   &= NearEqual(y1[1], 1.0 / x[1], eps, eps);
   x1[0] = 0.0;
   x1[1] = 1.0;
   x1[2] = 0.0;
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], 0.0,                  eps, eps);
   ok   &= NearEqual(y1[1], - x[2] / (x[1]*x[1]), eps, eps);
   // -------------------------------------------------------------------
   // check second order forward mode
   CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
   x2[0] = 0.0;
   x2[1] = 0.0;
   x2[2] = 0.0;
   scalar  f1_x1_x1 = 2.0 * x[2] / (x[1] * x[1] * x[1] );
   y2    = f.Forward(2, x2);
   ok   &= NearEqual(y2[0], 0.0,            eps, eps);
   ok   &= NearEqual(y2[1], f1_x1_x1 / 2.0, eps, eps);
   // -------------------------------------------------------------------
   // check first order reverse
   CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
   w[0] = 1.0;
   w[1] = 0.0;
   d1w  = f.Reverse(1, w);
   ok  &= NearEqual(d1w[0], 0.0, eps, eps);
   ok  &= NearEqual(d1w[1], 0.0, eps, eps);
   ok  &= NearEqual(d1w[2], 0.0, eps, eps);
   w[0] = 0.0;
   w[1] = 1.0;
   d1w  = f.Reverse(1, w);
   ok  &= NearEqual(d1w[0], 0.0,                  eps, eps);
   ok  &= NearEqual(d1w[1], - x[2] / (x[1]*x[1]), eps, eps);
   ok  &= NearEqual(d1w[2], 1.0 / x[1],           eps, eps);
   // -------------------------------------------------------------------
   // check second order reverse
   CPPAD_TESTVECTOR(scalar) d2w(2 * n);
   d2w  = f.Reverse(2, w);
   // partial f_1 w.r.t x_0
   ok  &= NearEqual(d2w[0 * 2 + 0], 0.0,                  eps, eps);
   // partial f_1 w.r.t x_1
   ok  &= NearEqual(d2w[1 * 2 + 0], - x[2] / (x[1]*x[1]), eps, eps);
   // partial f_1 w.r.t x_2
   ok  &= NearEqual(d2w[2 * 2 + 0], 1.0 / x[1],           eps, eps);
   // partial f_1 w.r.t x_1, x_0
   ok  &= NearEqual(d2w[0 * 2 + 1], 0.0,                  eps, eps);
   // partial f_1 w.r.t x_1, x_1
   ok  &= NearEqual(d2w[1 * 2 + 1], f1_x1_x1,             eps, eps);
   // partial f_1 w.r.t x_1, x_2
   ok  &= NearEqual(d2w[2 * 2 + 1], - 1.0 / (x[1]*x[1]),  eps, eps);
   // -------------------------------------------------------------------
   return ok;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end atomic_two_eigen_mat_inv.cpp}
*/