1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_two_eigen_mat_inv.cpp app}
Atomic Eigen Matrix Inverse: Example and Test
#############################################
Description
***********
The :ref:`ADFun-name` function object *f* for this example is
.. math::
f(x) =
\left( \begin{array}{cc}
x_0 & 0 \\
0 & x_1
\end{array} \right)^{-1}
\left( \begin{array}{c}
0 \\
x_2
\end{array} \right)
=
\left( \begin{array}{c}
0 \\
x_2 / x_1 )
\end{array} \right)
{xrst_toc_hidden
include/cppad/example/atomic_two/eigen_mat_inv.hpp
}
Class Definition
****************
This example uses the file :ref:`atomic_two_eigen_mat_inv.hpp-name`
which defines matrix multiply as a :ref:`atomic_two-name` operation.
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_two/eigen_mat_inv.hpp>
# include <cppad/example/atomic_two/eigen_mat_mul.hpp>
bool eigen_mat_inv(void)
{
typedef double scalar;
typedef CppAD::AD<scalar> ad_scalar;
typedef atomic_eigen_mat_inv<scalar>::ad_matrix ad_matrix;
//
bool ok = true;
scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
using CppAD::NearEqual;
//
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// -------------------------------------------------------------------
// object that multiplies matrices
atomic_eigen_mat_mul<scalar> mat_mul;
// -------------------------------------------------------------------
// object that computes inverse of a square matrix
atomic_eigen_mat_inv<scalar> mat_inv;
// -------------------------------------------------------------------
// declare independent variable vector x
size_t n = 3;
CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
for(size_t j = 0; j < n; j++)
ad_x[j] = ad_scalar(j + 1);
CppAD::Independent(ad_x);
// -------------------------------------------------------------------
// left = [ x[0] 0 ]
// [ 0 x[1] ]
size_t nr_left = 2;
ad_matrix ad_left(nr_left, nr_left);
ad_left(0, 0) = ad_x[0];
ad_left(0, 1) = ad_scalar(0.0);
ad_left(1, 0) = ad_scalar(0.0);
ad_left(1, 1) = ad_x[1];
// -------------------------------------------------------------------
// right = [ 0 , x[2] ]^T
size_t nc_right = 1;
ad_matrix ad_right(nr_left, nc_right);
ad_right(0, 0) = ad_scalar(0.0);
ad_right(1, 0) = ad_x[2];
// -------------------------------------------------------------------
// use atomic operation to compute left^{-1}
ad_matrix ad_left_inv = mat_inv.op(ad_left);
// use atomic operation to multiply left^{-1} * right
ad_matrix ad_result = mat_mul.op(ad_left_inv, ad_right);
// -------------------------------------------------------------------
// declare the dependent variable vector y
size_t m = 2;
CPPAD_TESTVECTOR(ad_scalar) ad_y(2);
for(size_t i = 0; i < m; i++)
ad_y[i] = ad_result( long(i), 0);
CppAD::ADFun<scalar> f(ad_x, ad_y);
// -------------------------------------------------------------------
// check zero order forward mode
CPPAD_TESTVECTOR(scalar) x(n), y(m);
for(size_t i = 0; i < n; i++)
x[i] = scalar(i + 2);
y = f.Forward(0, x);
ok &= NearEqual(y[0], 0.0, eps, eps);
ok &= NearEqual(y[1], x[2] / x[1], eps, eps);
// -------------------------------------------------------------------
// check first order forward mode
CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
x1[0] = 1.0;
x1[1] = 0.0;
x1[2] = 0.0;
y1 = f.Forward(1, x1);
ok &= NearEqual(y1[0], 0.0, eps, eps);
ok &= NearEqual(y1[1], 0.0, eps, eps);
x1[0] = 0.0;
x1[1] = 0.0;
x1[2] = 1.0;
y1 = f.Forward(1, x1);
ok &= NearEqual(y1[0], 0.0, eps, eps);
ok &= NearEqual(y1[1], 1.0 / x[1], eps, eps);
x1[0] = 0.0;
x1[1] = 1.0;
x1[2] = 0.0;
y1 = f.Forward(1, x1);
ok &= NearEqual(y1[0], 0.0, eps, eps);
ok &= NearEqual(y1[1], - x[2] / (x[1]*x[1]), eps, eps);
// -------------------------------------------------------------------
// check second order forward mode
CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
x2[0] = 0.0;
x2[1] = 0.0;
x2[2] = 0.0;
scalar f1_x1_x1 = 2.0 * x[2] / (x[1] * x[1] * x[1] );
y2 = f.Forward(2, x2);
ok &= NearEqual(y2[0], 0.0, eps, eps);
ok &= NearEqual(y2[1], f1_x1_x1 / 2.0, eps, eps);
// -------------------------------------------------------------------
// check first order reverse
CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
w[0] = 1.0;
w[1] = 0.0;
d1w = f.Reverse(1, w);
ok &= NearEqual(d1w[0], 0.0, eps, eps);
ok &= NearEqual(d1w[1], 0.0, eps, eps);
ok &= NearEqual(d1w[2], 0.0, eps, eps);
w[0] = 0.0;
w[1] = 1.0;
d1w = f.Reverse(1, w);
ok &= NearEqual(d1w[0], 0.0, eps, eps);
ok &= NearEqual(d1w[1], - x[2] / (x[1]*x[1]), eps, eps);
ok &= NearEqual(d1w[2], 1.0 / x[1], eps, eps);
// -------------------------------------------------------------------
// check second order reverse
CPPAD_TESTVECTOR(scalar) d2w(2 * n);
d2w = f.Reverse(2, w);
// partial f_1 w.r.t x_0
ok &= NearEqual(d2w[0 * 2 + 0], 0.0, eps, eps);
// partial f_1 w.r.t x_1
ok &= NearEqual(d2w[1 * 2 + 0], - x[2] / (x[1]*x[1]), eps, eps);
// partial f_1 w.r.t x_2
ok &= NearEqual(d2w[2 * 2 + 0], 1.0 / x[1], eps, eps);
// partial f_1 w.r.t x_1, x_0
ok &= NearEqual(d2w[0 * 2 + 1], 0.0, eps, eps);
// partial f_1 w.r.t x_1, x_1
ok &= NearEqual(d2w[1 * 2 + 1], f1_x1_x1, eps, eps);
// partial f_1 w.r.t x_1, x_2
ok &= NearEqual(d2w[2 * 2 + 1], - 1.0 / (x[1]*x[1]), eps, eps);
// -------------------------------------------------------------------
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_two_eigen_mat_inv.cpp}
*/
|