1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_two_eigen_mat_mul.cpp app}
Atomic Eigen Matrix Multiply: Example and Test
##############################################
Description
***********
The :ref:`ADFun-name` function object *f* for this example is
.. math::
f(x) =
\left( \begin{array}{cc}
0 & 0 \\
1 & 2 \\
x_0 & x_1
\end{array} \right)
\left( \begin{array}{c}
x_0 \\
x_1
\end{array} \right)
=
\left( \begin{array}{c}
0 \\
x_0 + 2 x_1 \\
x_0 x_0 + x_1 x_1 )
\end{array} \right)
{xrst_toc_hidden
include/cppad/example/atomic_two/eigen_mat_mul.hpp
}
Class Definition
****************
This example uses the file :ref:`atomic_two_eigen_mat_mul.hpp-name`
which defines matrix multiply as a :ref:`atomic_two-name` operation.
Use Atomic Function
*******************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_two/eigen_mat_mul.hpp>
bool eigen_mat_mul(void)
{ //
typedef double scalar;
typedef CppAD::AD<scalar> ad_scalar;
typedef atomic_eigen_mat_mul<scalar>::ad_matrix ad_matrix;
//
bool ok = true;
scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
using CppAD::NearEqual;
//
/* {xrst_code}
{xrst_spell_on}
Constructor
===========
{xrst_spell_off}
{xrst_code cpp} */
// -------------------------------------------------------------------
// object that multiplies arbitrary matrices
atomic_eigen_mat_mul<scalar> mat_mul;
// -------------------------------------------------------------------
// declare independent variable vector x
size_t n = 2;
CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
for(size_t j = 0; j < n; j++)
ad_x[j] = ad_scalar(j);
CppAD::Independent(ad_x);
// -------------------------------------------------------------------
// [ 0 0 ]
// left = [ 1 2 ]
// [ x[0] x[1] ]
size_t nr_left = 3;
size_t n_middle = 2;
ad_matrix ad_left(nr_left, n_middle);
ad_left(0, 0) = ad_scalar(0.0);
ad_left(0, 1) = ad_scalar(0.0);
ad_left(1, 0) = ad_scalar(1.0);
ad_left(1, 1) = ad_scalar(2.0);
ad_left(2, 0) = ad_x[0];
ad_left(2, 1) = ad_x[1];
// -------------------------------------------------------------------
// right = [ x[0] , x[1] ]^T
size_t nc_right = 1;
ad_matrix ad_right(n_middle, nc_right);
ad_right(0, 0) = ad_x[0];
ad_right(1, 0) = ad_x[1];
// -------------------------------------------------------------------
// use atomic operation to multiply left * right
ad_matrix ad_result = mat_mul.op(ad_left, ad_right);
// -------------------------------------------------------------------
// check that first component of result is a parameter
// and the other components are variables.
ok &= Parameter( ad_result(0, 0) );
ok &= Variable( ad_result(1, 0) );
ok &= Variable( ad_result(2, 0) );
// -------------------------------------------------------------------
// declare the dependent variable vector y
size_t m = 3;
CPPAD_TESTVECTOR(ad_scalar) ad_y(m);
for(size_t i = 0; i < m; i++)
ad_y[i] = ad_result(long(i), 0);
CppAD::ADFun<scalar> f(ad_x, ad_y);
// -------------------------------------------------------------------
// check zero order forward mode
CPPAD_TESTVECTOR(scalar) x(n), y(m);
for(size_t i = 0; i < n; i++)
x[i] = scalar(i + 2);
y = f.Forward(0, x);
ok &= NearEqual(y[0], 0.0, eps, eps);
ok &= NearEqual(y[1], x[0] + 2.0 * x[1], eps, eps);
ok &= NearEqual(y[2], x[0] * x[0] + x[1] * x[1], eps, eps);
// -------------------------------------------------------------------
// check first order forward mode
CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
x1[0] = 1.0;
x1[1] = 0.0;
y1 = f.Forward(1, x1);
ok &= NearEqual(y1[0], 0.0, eps, eps);
ok &= NearEqual(y1[1], 1.0, eps, eps);
ok &= NearEqual(y1[2], 2.0 * x[0], eps, eps);
x1[0] = 0.0;
x1[1] = 1.0;
y1 = f.Forward(1, x1);
ok &= NearEqual(y1[0], 0.0, eps, eps);
ok &= NearEqual(y1[1], 2.0, eps, eps);
ok &= NearEqual(y1[2], 2.0 * x[1], eps, eps);
// -------------------------------------------------------------------
// check second order forward mode
CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
x2[0] = 0.0;
x2[1] = 0.0;
y2 = f.Forward(2, x2);
ok &= NearEqual(y2[0], 0.0, eps, eps);
ok &= NearEqual(y2[1], 0.0, eps, eps);
ok &= NearEqual(y2[2], 1.0, eps, eps); // 1/2 * f_1''(x)
// -------------------------------------------------------------------
// check first order reverse mode
CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
w[0] = 0.0;
w[1] = 1.0;
w[2] = 0.0;
d1w = f.Reverse(1, w);
ok &= NearEqual(d1w[0], 1.0, eps, eps);
ok &= NearEqual(d1w[1], 2.0, eps, eps);
w[0] = 0.0;
w[1] = 0.0;
w[2] = 1.0;
d1w = f.Reverse(1, w);
ok &= NearEqual(d1w[0], 2.0 * x[0], eps, eps);
ok &= NearEqual(d1w[1], 2.0 * x[1], eps, eps);
// -------------------------------------------------------------------
// check second order reverse mode
CPPAD_TESTVECTOR(scalar) d2w(2 * n);
d2w = f.Reverse(2, w);
// partial f_2 w.r.t. x_0
ok &= NearEqual(d2w[0 * 2 + 0], 2.0 * x[0], eps, eps);
// partial f_2 w.r.t x_1
ok &= NearEqual(d2w[1 * 2 + 0], 2.0 * x[1], eps, eps);
// partial f_2 w.r.t x_1, x_0
ok &= NearEqual(d2w[0 * 2 + 1], 0.0, eps, eps);
// partial f_2 w.r.t x_1, x_1
ok &= NearEqual(d2w[1 * 2 + 1], 2.0, eps, eps);
// -------------------------------------------------------------------
// check forward Jacobian sparsity
CPPAD_TESTVECTOR( std::set<size_t> ) r(n), s(m);
std::set<size_t> check_set;
for(size_t j = 0; j < n; j++)
r[j].insert(j);
s = f.ForSparseJac(n, r);
check_set.clear();
ok &= s[0] == check_set;
check_set.insert(0);
check_set.insert(1);
ok &= s[1] == check_set;
ok &= s[2] == check_set;
// -------------------------------------------------------------------
// check reverse Jacobian sparsity
r.resize(m);
for(size_t i = 0; i < m; i++)
r[i].insert(i);
s = f.RevSparseJac(m, r);
check_set.clear();
ok &= s[0] == check_set;
check_set.insert(0);
check_set.insert(1);
ok &= s[1] == check_set;
ok &= s[2] == check_set;
// -------------------------------------------------------------------
// check forward Hessian sparsity for f_2 (x)
CPPAD_TESTVECTOR( std::set<size_t> ) r2(1), s2(1), h(n);
for(size_t j = 0; j < n; j++)
r2[0].insert(j);
s2[0].clear();
s2[0].insert(2);
h = f.ForSparseHes(r2, s2);
check_set.clear();
check_set.insert(0);
ok &= h[0] == check_set;
check_set.clear();
check_set.insert(1);
ok &= h[1] == check_set;
// -------------------------------------------------------------------
// check reverse Hessian sparsity for f_2 (x)
CPPAD_TESTVECTOR( std::set<size_t> ) s3(1);
s3[0].clear();
s3[0].insert(2);
h = f.RevSparseHes(n, s3);
check_set.clear();
check_set.insert(0);
ok &= h[0] == check_set;
check_set.clear();
check_set.insert(1);
ok &= h[1] == check_set;
// -------------------------------------------------------------------
return ok;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end atomic_two_eigen_mat_mul.cpp}
*/
|