File: cond_exp.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (123 lines) | stat: -rw-r--r-- 3,017 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin cond_exp.cpp}

Conditional Expressions: Example and Test
#########################################

See Also
********
:ref:`optimize_conditional_skip.cpp-name`

Description
***********
Use ``CondExp`` to compute

.. math::

   f(x) = \sum_{j=0}^{m-1} x_j \log( x_j )

and its derivative at various argument values
( where :math:`x_j \geq 0` )
with out having to re-tape; i.e.,
using only one :ref:`ADFun-name` object.
Note that :math:`x_j \log ( x_j ) \rightarrow 0`
as :math:`x_j \downarrow 0` and
we need to handle the case :math:`x_j = 0`
in a special way to avoid returning zero times minus infinity.

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end cond_exp.cpp}
*/
// BEGIN C++

# include <cppad/cppad.hpp>
# include <limits>

bool CondExp(void)
{  bool ok = true;

   using CppAD::isnan;
   using CppAD::AD;
   using CppAD::NearEqual;
   using CppAD::log;
   double eps  = 100. * CppAD::numeric_limits<double>::epsilon();

   // domain space vector
   size_t n = 5;
   CPPAD_TESTVECTOR(AD<double>) ax(n);
   size_t j;
   for(j = 0; j < n; j++)
      ax[j] = 1.;

   // declare independent variables and start tape recording
   CppAD::Independent(ax);

   AD<double> asum  = 0.;
   AD<double> azero = 0.;
   for(j = 0; j < n; j++)
   {  // if x_j > 0, add x_j * log( x_j ) to the sum
      asum += CppAD::CondExpGt(ax[j], azero, ax[j] * log(ax[j]), azero);
   }

   // range space vector
   size_t m = 1;
   CPPAD_TESTVECTOR(AD<double>) ay(m);
   ay[0] = asum;

   // create f: x -> ay and stop tape recording
   CppAD::ADFun<double> f(ax, ay);

   // vectors for arguments to the function object f
   CPPAD_TESTVECTOR(double) x(n);   // argument values
   CPPAD_TESTVECTOR(double) y(m);   // function values
   CPPAD_TESTVECTOR(double) w(m);   // function weights
   CPPAD_TESTVECTOR(double) dw(n);  // derivative of weighted function

   // a case where x[j] > 0 for all j
   double check  = 0.;
   for(j = 0; j < n; j++)
   {  x[j]   = double(j + 1);
      check += x[j] * log( x[j] );
   }

   // function value
   y  = f.Forward(0, x);
   ok &= NearEqual(y[0], check, eps, eps);

   // compute derivative of y[0]
   w[0] = 1.;
   dw   = f.Reverse(1, w);
   for(j = 0; j < n; j++)
      ok &= NearEqual(dw[j], log(x[j]) + 1., eps, eps);

   // a case where x[3] is equal to zero
   check -= x[3] * log( x[3] );
   x[3]   = 0.;
   ok &= std::isnan( x[3] * log( x[3] ) );

   // function value
   y   = f.Forward(0, x);
   ok &= NearEqual(y[0], check, eps, eps);

   // check derivative of y[0]
   w[0] = 1.;
   dw   = f.Reverse(1, w);
   for(j = 0; j < n; j++)
   {  if( x[j] > 0 )
         ok &= NearEqual(dw[j], log(x[j]) + 1., eps, eps);
      else
         ok &= NearEqual(dw[j], 0.0, eps, eps);
   }

   return ok;
}
// END C++